

#### TAKING COOPERATION FORWARD

Workshop for replicant partners: Energy grid and infrastructures" Mai 06.2021

# Business Models for energy storage integration

PROSPECT2030 | HSMD | Prof. P. Komarnicki, Dr. P. Lombardi

## AGENDA



PROSPECT2030

#### RES

Status quo in EU and in Germany Integrating volatile RES: Problems and solutions Business models for energy storage integration

#### Conclusions

# EUROPEAN GREEN DEAL STRATEGY





#### DECARBONIZATION. PROBLEMATIC TO **GENERATE ELECTRICITY THROUGH RES:** GERMAN EXAMPLE



RES-Generation and Redispatch actions in Germany (2015) -MWh



**RES-curtail in Germany** 

2009-2018

EE-Erzeugung und Redispatchmaßnahmen 2015<sup>1</sup> 1.000.000 in MWh 800.000 600.000 400.000 200.000 TΥ Wind and Sun Generation Redispatch: reduction of Generation from conventional power plants Redispatch: increase of Generation from conventional power plants Wind Generation -400.000

22.10.

05.11 9.11

08.10

24.09

17.12. 31.12.

03.12.

26.03.

09.04

26.02. 2.03.

2.02

Quelle: Monitoringreferat der Bundesnetzagentur <sup>1</sup>In dieser Abbildung wird die Korrelation zwischen der Einspeisung Erneuerbarer Energien und Redispatchmaßnahmen dargestellt. Es gibt weitere Ursachen für Redispatchentwicklungen, die unter 3.1.1 genannt sind

02.07 16.07 30.07

8.06

13.08 27.08 10.09

07.05.

21.05 04.06

23.04



01.01

5.01 9.01

### SOLUTION FOR INTEGRATING RES INTO THE ENERGY SYSTEMS: MORE FLEXIBILITY



#### Demand Side Management:

Align energy consumption with volatile Energy generation



#### **Energy Hubs:**

Connect the existing energy infrastructures to increase efficiency, flexibility and synergies

**Energy Buffering:** 

Store surplus energy for times with high demand

TAKING COOPERATION FORWARD

### **ENERGY STORAGE SYSTEM APPLICATIONS**





TAKING COOPERATION FORWARD

7

# ENERGY STORAGE SYSTEMS





Also: Thermal Energy Storage, Flywheels, Capacitors

# ENERGY STORAGE SYSTEMS: PRATICAL EXPERIENCES





**SGESS** 

#### Specification

- power:
- capacity:
- Fed-in:
- size:
- mass:
- technical features:
  - reactive power capability
  - black start capability (grid restauration)
  - island grid capability (can be synchronized and reconnected)
- > e.g. up to 4h supply of VDTC building



TAKING COOPERATION FORWARD

1 MW

26t

0.5 MWh

### 1ST BUSINESS CASE. STORAGE USAGE IN PV PARK NEUHARDENBERG (GERMANY)



#### SGESS

- development and implementation of control algorithm and usage strategies
- multi purpose use cases to minimize PV-own consumption, active and reactive power supply, energy market, etc.

- 5MW battery storage for primary reserve
  - scientific valuation of usage concept and operation
  - life-time and operation data analyses



### **1ST BUSINESS CASE. STORAGE USAGE IN PV PARK NEUHARDENBERG (GERMANY)**





### 1ST BUSINESS CASE. STORAGE USAGE IN PV PARK NEUHARDENBERG (GERMANY)





### 2ND BUSINESS CASE. STORAGE USAGE IN MECHANICAL INDUSTRY





### **3RD BUSINESS CASE. SHARING ECONOMY**





### **3RD BUSINESS CASE. SHARING ECONOMY**



PROSPECT2030



#### Battery size: 110 kW, 37 kWh. Li-ion Technology Battery parameter regarding the year 2016



### Battery size: 75 kW, 270 kWh. Vanadium RF Technology Battery parameters regarding the year 2025

|                                                                        | Li-ion |       | NaS  |      | VRF   |       |
|------------------------------------------------------------------------|--------|-------|------|------|-------|-------|
| Parameter                                                              | 2016   | 2025  | 2016 | 2025 | 2016  | 2025  |
| Specific energy storage investment costs [€/kWh]                       | 450    | 250   | 300  | 225  | 250   | 100   |
| Specific power conversion investment costs [€/kW]                      | 175    | 100   | 175  | 100  | 400   | 300   |
| Overhead investment costs [% of total investment costs]                | 20     | 20    | 20   | 20   | 30    | 30    |
| Annual operational and maintenance costs [% of total investment costs] | 1      | 1.5   | 2    | 2.5  | 2     | 2.5   |
| Battery system roundtrip efficiency AC to AC [%]                       | 85     | 90    | 80   | 85   | 75    | 80    |
| Depth of discharge [%]                                                 | 80     | 85    | 90   | 90   | 100   | 100   |
| Average cycle life [number of full cycles]                             | 5500   | 10000 | 4500 | 6000 | 12000 | 25000 |
| Calendar life [years]                                                  | 12     | 20    | 15   | 20   | 20    | 20    |
| Self-discharge of battery cells [%/day]                                | 0.1    | 0.04  | 0    | 0    | 0     | 0     |
| Degradation [%/year]                                                   | 1.5    | 1     | 1.3  | 1    | 0     | 0     |

#### **3RD BUSINESS CASE. SHARING ECONOMY**





TAKING COOPERATION FORWARD

# CONCLUSIONS



- Energy storage systems as key element for the decarbonisation process
- Battery technologies able to cover both power as well as energy applications
- For single use applications, it is difficult to find attractive business models
- Sharing economy business models result to be economically more attractive than single use application



PROSPECT2030

# THANK YOU FOR YOUR ATTENTION

