

TAKING COOPERATION FORWARD

Online Meeting May 06.2020

Challenges and advantages of electro mobility for the grid integration

PROSPECT2030 | HSMD | Prof. P. Komarnicki, Dr. P. Lombardi, Dr. C. Wenge

AGENDA

PROSPECT2030

RES

Status quo in EU and in Germany Integrating volatile RES: Problems and solutions Multi criteria planning methodology : Analytic Hierarchy <u>Process</u> Study case: Siberian Isolated Power Systems

NEED OF CHANGING ENERGY SOURCES

Die vom Umweltbundesamt zusammengestellten Karten und Daten zur aktuellen Immissionssituation dienen der orientierenden Information der Bevölkerung. Auf Grund der weiträumigen Betrachtung ist eine kleinräumige Interpretation nicht zulässig.

0.5 yolm

5 µg/m

> 10 µg/m 15 µpim

> 20 usim

> 25 µg/m

> 30 pigne + 35 min

> 50 um

ELECTRIFICATION OF MOBILITY STARTED

- Global change in energy sectors use of RES
- Expansion to renewable energies and electrification of mobility sector
- Change to green mobility; electric vehicles driven with RES
- Number of EV-Models on market increases rapidly
- Integration in existing infrastructure challenge or benefit

ELECTRIFICATION OF MOBILITY STARTED

- How much do EVs change the local energy demand ?
- How many charging stations are needed and where?
- Do we need fast charger and does it match with existing infrastructure?
- Electric vehicles are on market and will become more
- Smart E-Mobility-Systems are a chance for local RES integration

ELECTRIFICATION OF MOBILITY STARTED

- How much do EVs change the local energy demand ?
- How many charging stations are needed and where?
- Do we need fast charger and does it match with existing infrastructure?
- Charging station will become more
- Smart E-Mobility-Systems are a chance for local RES integration

EXAMPLE INTEGRATION EV FLEET

charging infrastructure

EV clients

general Questions

- How is the range of EV's and do they fulfil my requirements?
 - \rightarrow Analysing existing fleet and use
- How and where can I charge?
 - \rightarrow Analysing energy demand and charging options
- What charging infrastructure do I need?
 - \rightarrow Analysing EV profiles and infrastructure

Advanced Questions

- What potential for EV integration exists?
 - \rightarrow Analysing infrastructure (load, generation and storage)
- Could EV (EV infrastructure) support grid/ ancillary services?
 - \rightarrow Question of power electronics (charger) and ICT

BES

grid

DEMAND OF CAPACITY IN GRID

AC-charging

- AC-stations 230V 3,6kW (ca. 15km / hour)*
- AC-stations 400V 22kW (ca. 100km / hour)*

Fast charger

- DC-charger > 50kW (>200km/hour)*
- \rightarrow 200kW state of the art
- * Estimation of recharging an electric vehicle based on the range

IS EV INTEGRATION POSSIBLE?

Results of different studies

- 90% of tours could be fulfilled by EV's, the last 10% with PHEV
- High potential of Demand Side Management (DSM)
- High potential for RES optimized charging
- Fast charger are not needed for intelligent fleet and charging management
- High potential of energy and cost optimisation*

High potential of grid/ ancillary services (AS)*

*potential increases with size of fleet

POTENTIAL FOR GRID SUPPORT WITH EV'S

Interrec

CENTRAL EUROPE PROSPECT2030

ANCILLARY SERVICES WITH EV

POSSIBLE ACTIONS WITH CHARGER

13

Charging curve according to renewables, tariff, etc.	
Active power control Frequency support (Power operating points according to local frequency measured (Power operating points according to local frequency measured Voltage support (Power specification according to local network voltage) Short-circuit power supply (Power specification according to local network voltage) 	ment)
Reactive power control • Voltage support (cos (phi) / reactive power operating points according to local voltage)	grid
Phase-selective active power control • Phase symmetry (active power withdrawal according to phase voltage)	
Distortion reactive power • Voltage quality (active filters according to harmonics)	

TAKING COOPERATION FORWARD

Load management \rightarrow active power control

- Charging schedule calculation depending on RES, tariff, grid capacities, etc.
 (power control with charging schedule)
- Bidirectional charger needed

- Intelligent energy management
- Integrated intelligent charging infrastructure
- Intelligent EV

→ standardized interfaces for communication

PROSPECT2030

Testing storage systems and interfaces

CONCLUSION

- EV will be part of mobility and strategies for integration are needed
- ICT is needed to fully use potential of EV's
- EV could be used for grid/ ancillary services
- Further standards are needed

THANK YOU FOR YOUR ATTENTION

