

TAKING COOPERATION FORWAR

• online

Implementation of modePROCON showcasing for surface water - Dresden-Hosterwitz, Germany

boDEREC-CE I Chair of Hydrology and River Basin Management

OUTLINE

STUDY AREA

Location of sampling points at Niederpoyritz and Hosterwitz

- Investigated abstraction well for drinking water supply
- A site of riverbank filtration: Dresden-Hosterwitz and -Niederpoyritz
- Riverbank filtration is considered as a showcase of surface water use, but in fact a groundwater water model is applied for the investigation.

DETECTED PPCPs

- The following PPCPs were detected and selected to be modeled in the Dresden-Hosterwitz pilot area are:
 - 4-Formylaminoantipyrine
 - Benzotriazole
 - 5-methyl-1-H-benzotriazole
 - Carbamazepine
 - Lamotrigine
 - Oxypurinol

Can the detected PPCPs reach the wells?

APPLYING modePROCON Selecting the water source

CENTRAL EUROPE

boDEREC-CE

Interreg

0 X

Groundwater System Karst Aquifer System Surface Water System

EvaluationEvaluationEvaluationModel requirementsModel requirementsModel requirements

TAKING COOPERATION FORWARD

5

APPLYING modePROCON Selecting the PPCPs

PPCP

ebutolol

Acesulfam

Alfuzosin

Back

Ρ	PCI	P Data - Sol - Sol - Vol - De - pK	ts: Iubility: mg/L rbability (logKow): Unit latility (Henry's constan gradability (DT50): Day a: Unitless	Data-Ramg/L[1]: SciFr (logKow): Unitless[2]: Comr (Henry's constant): atm*m³/mol[3]: ECHility (DT50): Dayess				Data-Referen [1]: SciFinder [2]: CompTox ([3]: ECHA	r ence: er ox US EPA	
		Name	CAS	Solubility	Sorbabililty	рКа	Volatility	Degradability	Re	
1		17a-ethynilestradiol	57-63-6	3.9	4.11	10.24	9.44e-08	97.8	Solubility and	
2		17-alpha-estradiol	57-91-0	3.0	4.15	10.27	3.75e-06	97.2	Solubility and	
3		17-beta-estradiol	50-28-2	3.0	4.15	10.27	3.75e-06	97.2	Solubility and	
4		4-formylaminoantipyrine	1672-58-8	14000.0	-0.06	12.72	6.98e-09	5.15	Solubility and	

1.77

-0.88

1.27

13.78 8.73e-10

-0.28 6.27e-05

14.8 2.59e-11

Add new data

3.35

4.29

4.29

37517-30-9 340000.0

33665-90-6 1000000.0

81403-80-7 4300.0

Delete all user input

All the 6 detected and selected to be modelled PPCPs are contained in the database

Interreg

But only 5 can be selected simultaneously in modePROCON.

Solubility and

Solubility and

Solubility and

Evaluate.

APPLYING modePROCON Selecting the PPCPs

1.27

14.8 2.59e-11

Add new data

4.29

81403-80-7 4300.0

Delete all user input

In this showcase, we focus on 5 depending on their importance for the stakeholders and the others can be analysed successively.

TAKING	COOF	PERATION	FORWARD
--------	------	----------	---------

Solubility and

Evaluate.

•

Alfuzosin

Back

PPCP

PPCP _ × Although the Indexes and Result Modelling is recommended when likelihood is 'Very Likely' or 'Likely' Solubility Sorbabililty Volatility Degradability Likelihood Literature Name degradability of Very likely https://doi.org/10.1016/j.watres.2020.115523 1 4-formylaminoantipyrine 6 2 Benzotriazol 6 5 7 https://doi.org/10.1016/j.watres.2020.115523 1 Likely most PPCPs is 3 Benzotriazol methyl (Methylbenzotriazol) 5 6 https://doi.org/10.1016/j.scitotenv.2012.04.059 5 4 Very likely https://doi.org/10.1016/j.scitotenv.2012.04.059 4 Carbamazepine 4 Likely 7 5 Lamotrigine 4 6 1 Likelv https://doi.org/10.1016/j.envpol.2020.115387 very high, 5-7 methyl-1-H-6 benzotriazole 5 4-formylaminoantipyrine 1 hdex value has a very low Benzotriazol Benzotriazol methyl (Methylbenzotriazol) degradability. Carbamazepine Lamotrigine 2 1 Solubility Sorbability Volatility Degradability Back Go to model requirements

TAKING COOPERATION FORWARD

8

Formylaminoant ipyrine and 5methyl-1-Hbenzotriazole are very likely to be detected.

TAKING COOPERATION FORWARD

Benzotriazole. Carbamazepine, and Lamotrigine are likely to be detected in the water, due to the higher solubility.

TAKING COOPERATION FORWARD

APPLYING modePROCON Model requirements

PPCP				-	
Gro	oundwater model requ	irements	Evaluate	5	
Pleas	se check the available parameter	to evaluate			
	Parameter	Application	Remark		-
1 🛛	Water level	It is necessary to determine the flow direction, boundary conditions, response to stress and hydraulic properties.			
2 🗹	Hydraulic conductivity	It is used to describe groundwater flow in the porous medium. The hydraulic conductivity depends on fluid properties (e.g. density, dynamic viscosity) and medium properties (e.g. grain size and shapes, pore distribution and shape, porosity).			
3 🗹	Thickness of the aquifer	It is needed to estimate the transmissivity of the aquifer.		1	
4 🗹	Flow exchange with surface water	It is important to better understand the relation between surface water and groundwater (i.e., losing/gaining conditions). It can lead to dilution, mixing, and transference of PPCPs into the groundwater.			-
5 🗆	Source of contamination	It is needed to set initial conditions for the transport model and define the contaminant source and releases.			
6 🗹	itial concentration of the contaminant	It is needed to set up initial conditions to solve the transport equation and estimate the potential magnitude and impact of the			
	Back				

All the required model **parameters** are known in this case, **except** of the **source of contamination**.

 modePROCON evaluates the data...

APPLYING modePROCON Model requirements

... and replies that a model cannot be **built** with the available data. modePROCON suggests a possibility to obtain the missing data in the remark column.

Please check the available parameter to evaluate

Groundwater model requirements

PPCP

	Parameter	Application		Remark
	Thickness of the aquifer	It is needed to estimate the transmissivity of the aquifer.	The data are available.	
Ø	Flow exchange with surface water	It is important to better understand the relation between surface water and groundwater (i.e., losing/gaining conditions). It can lead to dilution, mixing, and transference of PPCPs into the groundwater.	The data are available.	-
	Source of contamination	It is needed to set initial conditions for the transport model and define the contaminant source and releases.	It can be estimated by ana collection bag of a seepage monitoring wells. Another i of unknown contaminant s Potential sources of contar contaminated surface wate systems, livestock breeding the study area is recomment	lysing seepage water collected in a e meter, or with a network of alternative is to solve inverse problems ource (e.g., particle backtracking). nination are: infiltration of r, leaking sewers, landfills, septic and agriculture. Intensive research in nded.
	Initial concentration of the contaminant	It is needed to set up initial conditions to solve the transport equation and estimate the potential magnitude and impact of the contamination	The data are available.	
Back				

Evaluate Model cannot be built. Please collect the missing

data.

APPLYING modePROCON Model requirements

PPCP

Surface water model requirements

Evaluate

П

It is possible to develop a numerical model. Please communicate with any university or consultant.

Please check the available parameter to evaluate

		Parameter	Application	<u>•</u>
4	1		to dilution, mixing and transference of PPCPs into the surface water.	
5	5 🖂	Source of contamination	It is needed to set initial conditions for the transport model and define the contaminant source and releases.	The data are available
6	5 🗹	Initial concentration of the contaminant	It is needed to set up initial conditions to solve the transport equation and estimate the potential magnitude and impact of the contamination.	The data are available.
7	7 🖂	Point of interest	Physical locations that are likely to be exposure pathway to come into contact with a contaminated medium.	The data are available.
4				<u>▶</u>

Back

In this case, two scenarios were investigated.

The first scenario simulates the breakthrough curve of 1-day spill of oxypurinol with a concentration of 500 ng/l in the Elbe River on the first day of simulation time. The concentration of 500 ng/l refers from median value of 526 ng/l from 7 sampling campaigns.

The second scenario simulates the change in concentration arriving at OW 9/87-3 next to the abstraction well Br.145. It corresponds to different spill times of input

source in the Elbe River water.

MODEL RESULTS

Travel time and flow paths of particles moving from the river to the abstraction well

Scenario 1: Breakthrough curve after a 500 ng/l oxypurinol input conc. in Elbe River water due to a 1-day spill.

Scenario 2: Change in concentration at OW 9/87-3 after different spill durations in Elbe River water

