

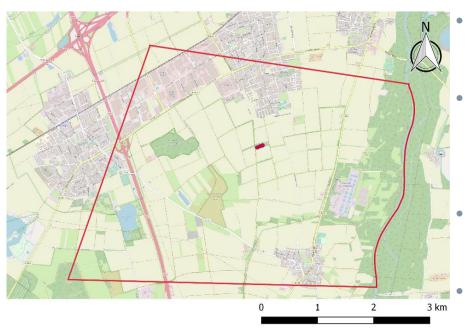
- online
- Implementation of modePROCON showcasing for groundwater Neufahrn bei Freising, Germany
- boDEREC-CE I Chair of Hydrology and River Basin Management

OUTLINE

Study area

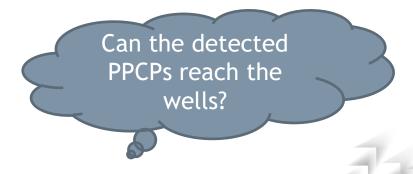
2 Detected PPCPs

Applying modePROCON


4 Model results

STUDY AREA

The well field (red dots) in the study area (red framed) is depicted.


- Investigated well field next to "Neufahrn bei Freising"
- Located in the Munich gravel plain
 - Shallow aquifer (~ 4-17 m b.s.)
 - Rural area mainly used for agriculture
 - WWTP discharging in nearby river "Isar"

DETECTED PPCPs

- These PPCPs were detected in the nearby river frequently:
 - 4-formylaminoantripyrine (4-FAA)
 - Benzotriazole
 - Diatrizoate
 - Iohexol
 - Iomeprol

APPLYING modePROCON Selecting the water source

Evaluation

Model requirements

Evaluation

Model requirements

Groundwater System Karst Aquifer System Surface Water System

Evaluation

Model requirements

APPLYING modePROCON Selecting the PPCPs

■ PPCP

Units:

- Solubility: mg/L

- Sorbability (logKow): Unitless

- Volatility (Henry's constant): atı

- Degradability (DT50): Day

- pKa: Unitless

Data-Reference:

[1]: SciFinder

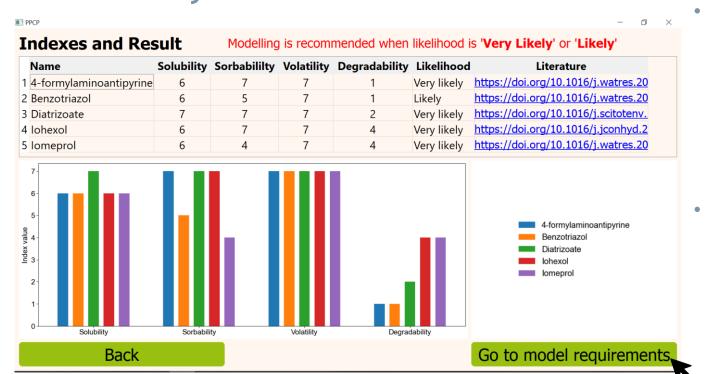
[2]: CompTox US EPA

		Name	CAS	Solubility	Sorbabililty	рКа	Volatility	Degradability	
4	~	4-formylaminoantipyrine	1672-58-8	14000.0	-0.06	12.72	6.98e-09	5.15	S
5		Acebutolol	37517-30-9	340000.0	1.77	13.78	8.73e-10	3.35	S
6		Acesulfam	33665-90-6	1000000.0	-0.88	-0.28	6.27e-05	4.29	S
7		Alfuzosin	81403-80-7	4300.0	1.27	14.8	2.59e-11	4.29	S
3		Atenolol	29122-68-7	999000.0	0.34	13.88	3.08e-10	3.53	S
)		Atorvastatin	134523-00-5	4900.0	3.85	4.29	1.1e-11	85.8	S
10		Azithromycin	83905-01-5	1000000.0	2.58	13.28	1.29e-11	15.2	S
11		Benzotriazol	95-14-7	21000.0	1.44	8.38	2.46e-08	3.99	S
i ĵ		protriozal mathyd Mathydhanzatria	20205 42 4						F
		Back	Delete all user inpu	it	Add new da	ata		Evaluate .	

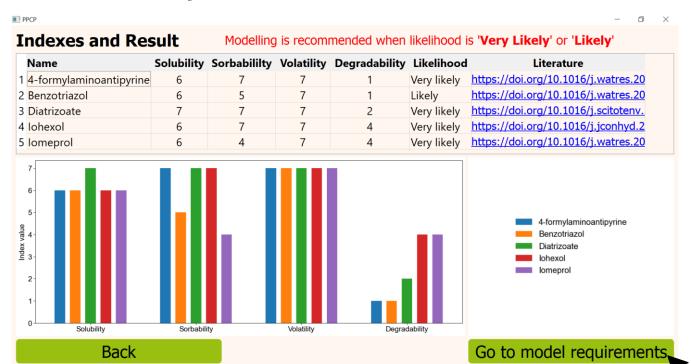
The detected PPCPs 4-FAA, benzotriazole, diatrizoate, iohexol and iomeprol are contained in the database and can be selected simultaneously.

APPLYING modePROCON Probability Estimation

Name	Solubility	Sorbabililty	Volatility	Degradability	Likelihood	Literature
1 4-formylaminoantipyrine	6	7	7	1	Very likely	https://doi.org/10.1016/j.watres.20
2 Benzotriazol	6	5	7	1	Likely	https://doi.org/10.1016/j.watres.20
3 Diatrizoate	7	7	7	2	Very likely	https://doi.org/10.1016/j.scitotenv.
4 Iohexol	6	7	7	4	Very likely	https://doi.org/10.1016/j.jconhyd.2
5 Iomeprol	6	4	7	4	Very likely	https://doi.org/10.1016/j.watres.20
6-						
6- 5- 5- 90lg 4- 4- 2- 1- 0 Solubility	Sorbabili		Vojatility		dability	4-formylaminoantipyrine Benzotriazol Diatrizoate lohexol lomeprol

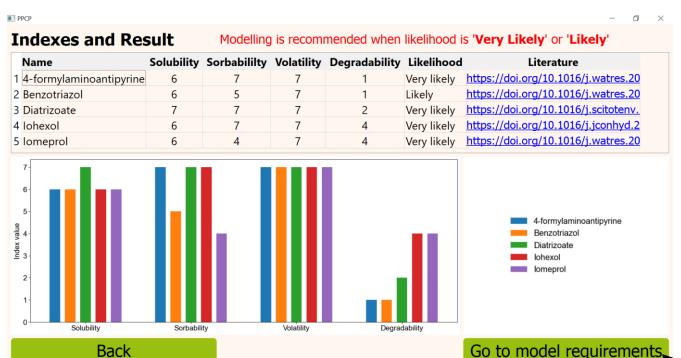

Although the volatility and the solubility of all PPCPs is in the same range, different likelihoods can be obtained.

APPLYING modePROCON Probability Estimation



- The detection probabilities of 4-FAA, diatrizoate, iomeprol and iohexol are very likely.
- This is due to relatively high index values of the compounds for each parameter.

APPLYING modePROCON **Probability Estimation**



- For iomeprol and iohexol the very likely probability results from the little biodegradability.
- 4-FAA and diatrizoate are indeed better biodegradable but show a very low adsorption capability.

APPLYING modePROCON **Probability Estimation**

- The detection probability of benzotriazole is only likely.
- This is related to its higher capability to adsorb to organic soil material and its increased degradability, compared to the other compounds.

APPLYING modePROCON Probability Estimation

B Diatrizoate I lohexol	6 6 7 6	7 5 7 7	7 7 7	1	Very likely	https://doi.org/10.1016/j.watres.20
2 Benzotriazol 3 Diatrizoate 4 Iohexol 5 Iomeprol	7	7		1	Libration	
4 Iohexol 5 Iomeprol	6		7		Likely	https://doi.org/10.1016/j.watres.20
5 Iomeprol	_	7	1	2	Very likely	https://doi.org/10.1016/j.scitotenv.
	6	•	7	4	Very likely	https://doi.org/10.1016/j.jconhyd.2
7	0	4	7	4	Very likely	https://doi.org/10.1016/j.watres.20
5 - entry 4 - 4 - 3 - 2 - 1 -			Volatility			4-formylaminoantipyrine Benzotriazol Diatrizoate lohexol lomeprol

As the investigated PPCPs are very likely or likely to be detected in water, modePROCON recommends to model the situation for further investigation.

APPLYING modePROCON Model requirements

Groundwater model requirements

Evaluate

Please check the available parameter to evaluate

Parameter	Application	Remark
Flow exchange with	It is important to better understand the	
surface water	relation between surface water and	
_	groundwater (i.e., losing/gaining	
(conditions). It can lead to dilution, mixing,	
•	and transference of PPCPs into the	
	groundwater.	
Source of	It is needed to set initial conditions for the	
contamination	transport model and define the	
	contaminant source and releases.	
nitial concentration of	It is needed to set up initial conditions to	
the contaminant	solve the transport equation and estimate	

- All the **required model parameters**are known in this
 case.
- modePROCON evaluates the data...

APPLYING modePROCON Model requirements

Groundwater model requirements

Evaluate

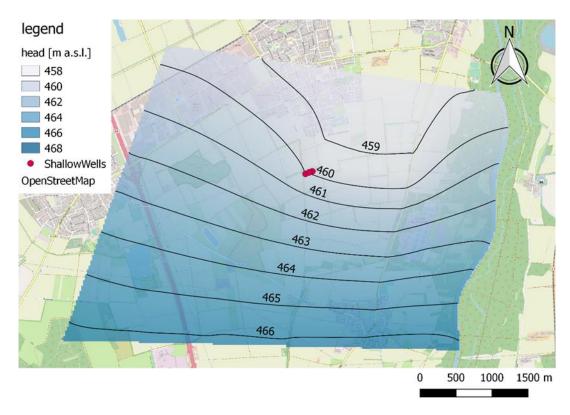
It is possible to develop a numerical model. Please communicate with any university or consultant.

Please check the available parameter to evaluate

	Parameter	Application groundwater.	Remark	
5 🗹	Source of contamination	It is needed to set initial conditions for the transport model and define the contaminant source and releases.	The data are available.	
6 ☑	Initial concentration of the contaminant	It is needed to set up initial conditions to solve the transport equation and estimate the potential magnitude and impact of the contamination.	The data are available.	
7 🗹	Point of interest	Physical locations that are likely to be exposure pathway to come into contact with a contaminated medium.	The data are available.	

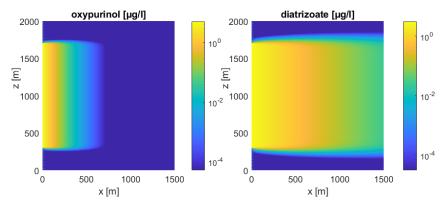
... and replies that a model can be built.

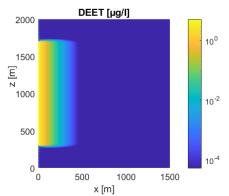
In a next step, a university or a consultant should be contacted to set up a transport model.



■ PPCP

MODEL RESULTS




- In this case, the
 evaluation of a flow
 model suggested that the
 wells are very unlikely
 impacted by the river
 water.
- Even for a **flood** event, the flow regime **remains** the same.
- So, the model excludes the river as a potential source here.

MODEL RESULTS

- Since some PPCPs were
 detected during the
 monitoring campaign also
 in the wells, other
 potential sources may be
 present in this case study.
- Transport modelling can be used, to further investigate potential sources and transport processes.

