

DELIVERABLE T3.3.1

D.T3.3.1 – Pilot actions preparation

06/2018

D.T3.3.1: Pilot actions preparation

A.T3.3 Preparation and procurement of pilot actions

Issued by: Partner Nr. 05 Date: Jun 2018

	Authors					
	Name (organization)	Name, e-mail				
WP leader	Mazovia Energy Agency (MAE), PP5	Aleksandra Luks, <u>a.luks@mae.com.pl</u>				
Contributing participants	Energy Agency of the Zlín Region (EAZK) (PP3)	Jan Vidomus, <u>jan.vidomus@eazk.cz</u> Tomáš Perutka, <u>tomas.perutka@eazk.cz</u>				

1. Introduction and aims

This deliverable is a kind of pre-investment report, which contains all information and data about buildings that allow for a description of the condition of the buildings and the pilot action.

Conducting research and analysis of selected buildings as pilot actions is necessary to ensure the identification of energy-related problem areas. Data collected from building owners given in the chapters below determine the current state of the facilities. It also provides the information needed to specify the energy profile of the buildings. In addition, it defines the measures and actions that were taken to implement the pilot action.

The aim of the document is presentation of plan preparatory activities to investment for the PA. This document describes activities as part of the tasks undertaken for each pilot action.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - HOLESOV

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Grammar school Owner / investor: Zlín region Year of construction: 1902 Year of use (if different from year of construction): -Gross building area [m²]: 4 948,1 Building volume [m³]: 22 878,3 Building envelope total surface area [m²]: 7 082,7 Shape factor (A/V ratio) [m⁻¹]: 0,31

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 4

Number of building users: 408 students + 33 teachers and other staff **Location**: Holesov is situated in the north part of the Zlín region cca 20 km far from Zlín.

Available technical documentation:Image: Second second

Building project for thermo-modernization of the building

Year [.]	2017	

Figure 1: Photo of building available for the PA3 – Holesov (source: Energy Agency of the Zlín Region).

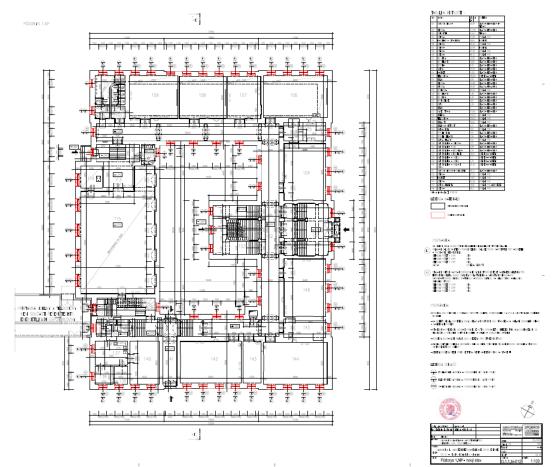


Figure 2: Typology of building available for the PA3 – Holesov (source: Energy Agency of the Zlín Region). D.T3.3.1 - Pilot actions preparation - Page 3

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

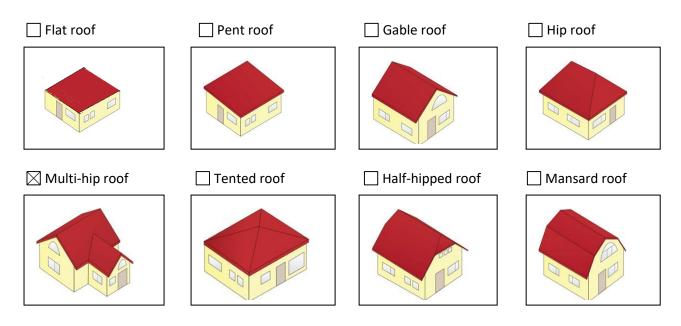
3.1.1. External walls

Walls total surface area [m²]: 2 863,2

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ¹
			W	ALL type 1	
1	Lime-cast	0,03	0,88	1,1	0,3 required/0,25 recommended
2	Full brick	0,6	0,78		
3	Lime-	0,03	0,66		
	cement-				
	cast				
			W	ALL type 2	
1	Lime-cast	0,03	0,88	0,94	0,3 required/0,25 recommended
2	Full brick	0,75	0,78		
3	Lime-	0,03	0,66		
	cement-				
	cast				

Envelope material (different layers):

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).


3.1.2. Roof

Type of roof:

¹ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

Roof slope [°]: no data in direction: no data **Roof total surface area** [m²]: 593 m² (STR1) + 672 m² insulated (SCH1)

Envelope material (different layers): STR1

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-	0,01	0,88	0,177 after heat	0,3 required/0,2 recommended
	cast			insulation	
2	Wood	0,025	0,18		
3	Air	0,22			
	space				
4	wood	0,025	0,18		
5	Gravel	0,15	0,58		
6	Full	0,065	0,78		
	brick				

Thermo-modernization (if carried out) Year: 2018 Applied thermal insulation material: mineral wool Thickness [cm]: 22 Thermal conductivity [W/mK]: 0,035

Envelope material (different layers): SCH1 – only layers that improve thermal conductivity

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Plasterboard	0,0125	0,22	0,141 after heat	0,24 required/ 0,16
2	Plastic film	0,005	0,35	insulation	recommended

Thermo-modernization (if carried out) Year: 2018 Applied thermal insulation material: mineral wool Thickness [cm]: 36 Thermal conductivity [W/mK]: 0,035

3.1.3. Ground floor

Floor total surface area [m²]: -Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1					

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: 839,9 m² (PDL1) + 703,2 m² (PDL2)

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,02	1,01	0,362	0,45 required/0,3 recommended
	tile				
2	Concrete	0,05	1,1		
3	Asphalt	0,003	0,21		
	strap				
4	Concrete	0,15	1,1		
5	Gravel	0,1	0,58		

Envelope material (different layers): PDL1

Envelope material (different layers): PDL2

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,02	1,01	1,097	1,05 required/0,7 recommended
	tile				
2	Concrete	0,05	1,1		
3	Gravel	0,2	0,58		
4	Full brick	0,15	0,73		

Basement

Is the basement heated ?

Basement walls total surface area [m²]:

Envelope material (different layers):					
No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

______ single window, single glazed

combined window, double glazed

____ combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

🔀 other (what ?)combined window, single glazed.....

Shading (sun protection):

-	curtains
	roller shutters
	wooden shutters
	internal blinds
	awnings
	other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: all Windows total surface area [m²]: Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 2,35 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out)

Year: 2018

Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

Material: Wood

Number of windows (if all windows are not replaced on the new ones): 264

Windows total surface area [m²]: 677,91

Diffusers in windows (YES or NO): NO

Heat transfer coefficient [W/m²K]: 0,9

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Aluminium Number of doors: 3 **Doors total surface area** [m²]: 32,6 Heat transfer coefficient [W/m²K]: 3,5 **Defined heat transfer coefficient** (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

Thermo-modernization (if carried out)

Year: 2018 Material: Wood Number of doors (if all doors are not replaced on the new ones): just one door Doors total surface area [m²]: 4,3 Heat transfer coefficient [W/m²K]: 1,08

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 1181563 kWh/year after investment

Energy consumption (heating) [GJ/year or kWh/year]: 2 400 GJ/year before, 1 807,5 GJ/year after Efficiency of the heating system [%]: 88

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 579 GJ/year

Efficiency of the hot water preparation system [%]: 88 the same as efficiency of the heating system Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): natural gas boiler

Regulation and control of systems in the building:

- thermostatic valves
- heat dividers
- motion sensors
- electricity meters
- water meters

other (what ?).....

Annual fuel consumption [kg or m³ or kWh or GJ]: 3207 GJ before the investment, 2610,5 GJ after investment

Electricity consumption [kWh/year]: 63 333 kWh

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Ventilation type	Short description
Natural ventilation based on natural processes occurring in the environment (using gravity)	

Mechanical	air exchange is due to the operation of an electric motor driven ventilator. Using			
(forced) ventilation	the mechanism gives us the ability to control the system			
Mechanical	operates on the principle of mechanical ventilation extended by a recuperator			
ventilation with	responsible for the recovery of heat from exhaust air from the building			
heat recovery				
Hybrid ventilation	combination of natural and mechanical ventilation. This system works alternately			
	depending on atmospheric conditions, using natural forces due to the difference in			
	temperature and external air movement (wind) and the mechanics of the fan in			
	the ventilation duct improving the ventilation conditions in case of need			
Mixing (blasting)	based on mixing the contaminated air in the building with clean air and expelling it			
ventilation	out. Fresh air flows through the air diffuser system			
Displacement	based on the separation of the two zones (the lower zone to about 1.1 m (sitting			
ventilation	position) or the 1.8 m (standing position) and the upper part) in which the			
	different characteristics of the air will be felt			

Table 1: Description of type ventilation.

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

$$EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$$

Non renewable primary energy demand for heating	Non renewable primary energy demand for cooling	Non renewable primary energy demand for ventilation	Non renewable primary energy demand for preparation of hot water	Non renewable primary energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
177	0	0	23	39	239

Annual demand for non renewable primary energy EP [kWh/m²/year]

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot	Final energy demand for electricity	Sum (1+2+3+4+5)
	U U		water	•	

1

177

2	3	4	5	6	ĺ

42

242

23

Annual utility energy demand EU [kWh/m²/year]

0

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
147	0	0	21	13	181

Energy class of the building (according to the table 2): D average energy-intensive building

0

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Energy class	Energy assessment	EU indicator [kWh/m ² /year]
A++	zero-energy building	≤ 10
A+	passive building	up to 15
A	low-energy building	from 15 to 45
В	energy-saving building	from 45 to 80
C	average energy efficient building	from 80 to 100
D	average energy-intensive building	from 100 to 150
E	energy-consuming building	from 150 to 250
F	high-energy consuming building	over 250

Table 2: Building energy class (source: Association for Sustainable Development).

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: 1 528 CZK per month with tax

Variable fee [per kWh]: 4,34 CZK per kWh with tax in high tariff (8 am-4 pm) and 1,98 CZK/kWh low tariff(from 4 pm-8 am)

Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

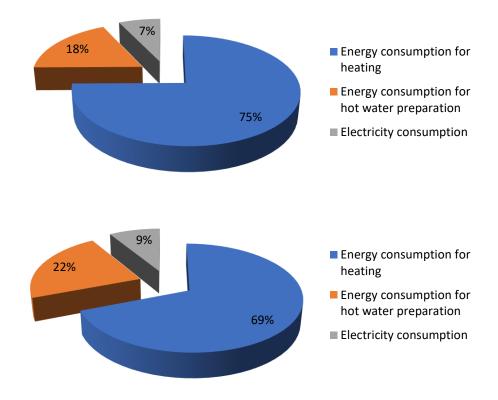
Fixed fee [per MW-month]:

Variable fee [per GJ]: Overall price is 846 CZK/MWh with tax (235 CZK/GJ). All parts of price depend on the consumption.

Subscription [per month]:

Summary and evaluation of the energy building status

The external walls do not meet the technical requirements in terms of the value of heat transfer coefficient, but the façade is "listed "(must be preserved). The thermo-modernization in 2018 includes the replacement of window and door joinery and roof insulation. The modernization caused that windows and doors are characterized by low heat transfer coefficient consistent with the legal regulations.


The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is high (88%). In total, the

building uses annually 890 832 kWh, 75% of which is for heating despite installed thermostatic valves. The energy class classifies it as an average energy intensive building. After completing the investment, the total energy consumption will be 726 249 kWh/year, 69% of which will be for heating.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

Figure 3: Energy consumption balance of the building for the PA3 – HOLESOV (before and after)

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

	PA3 - Holesov													
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected								
	work	description			research	external								
						expert								
1	Preparation	Based on energy	2015	-	DONE	EAZK								
		management of the				and Zlín								
		building and possibility of				region								
		donation Zlín region												

BOOSTEE-CE

		decided that Grammar school Holesov will be prepared for the Windows changing and heat insulation of the roof				
2	Project	Zlín region order the	9/2015-	18300	DONE	LOCHM
	blueprints	blueprints necessary for the	10/2017			ANN
		further progress of the				
		project.				
3	Energy audit	EAZK supported Energy	12/2014-	3500	DONE	TESPOR
		expert with all necessary	12/2016			А
		data related to the project				
4	Donation	EAZK prepared donation	8/2016-	0	DONE	EAZK
	application	application	11/2016			
5	Public	EAZK prepared blueprints	10/2017-	3000	DONE	RTS
	procurement	for the public procurement	01/2018			
6	Realization of	Whole realization will be	06/2018-	590000	NOT	JAVORN
	windows	done during summer	09/2018		STARTE	IK-CZ-
	changing and	holidays			D	PLUS
	roof insulation					
7	Evaluation of	EAZK continuously collect	10/2018	0	NOT	EAZK
	realization	data to be able to evaluate			STARTE	
		the project			D	
8	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK
	project	data to be able to evaluate			STARTE	
		the project			D	

Table 3: Time schedule and cost estimate of preparatory activities in the PA3 Holesov.

Table 4 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

	2018									2019									2020										
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Table 4: PA3 Holesov Activities plan.

start	of	PA preparations	PA	PA monitoring/evaluation	1	end o	f
WPT3			implementation			WPT3	

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - KROMERIZ basic school

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Primary school **Owner / investor**: Zlín region Year of construction: 1886 Year of use (if different from year of construction): 1887 Gross building area [m²]: 3 406,2 **Building volume** [m³]: 9 055,7 Building envelope total surface area [m²]: 2 143,19 Shape factor (A/V ratio) [m⁻¹]: 0,38

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 3

Number of building users: 50 children + 11 teachers

Location: City of Kromeriz is situated in the northwest part of the Zlín region cca 30 km far from Zlín.

• Yes C No Available technical documentation:

_		
Energy	audit	

2016

2015

Year:

Technical drawings

	thermo-modernization	
Killiding project tor	' thermo-modernization	of the nullding
building project for	thermo modermzation	or the bunding

Year:

Year	2015	
i cui i		

Figure 4: Photo of building available for the PA3 – Practical school Kroměříž (source: Energy Agency of the Zlín Region).

PÚDORYS 1.PP - NOVÝ STAV

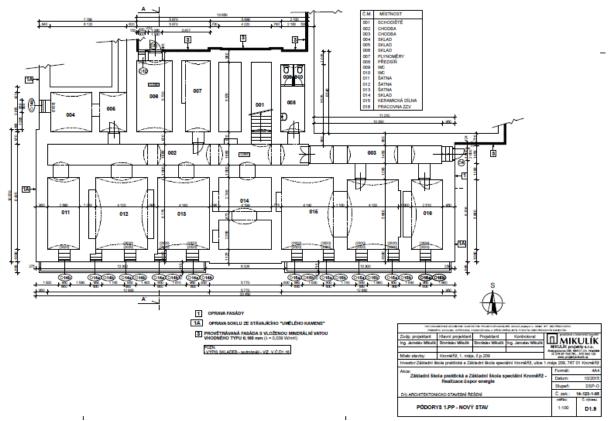


Figure 5: Typology of building available for the PA3 – Practical school Kroměříž (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

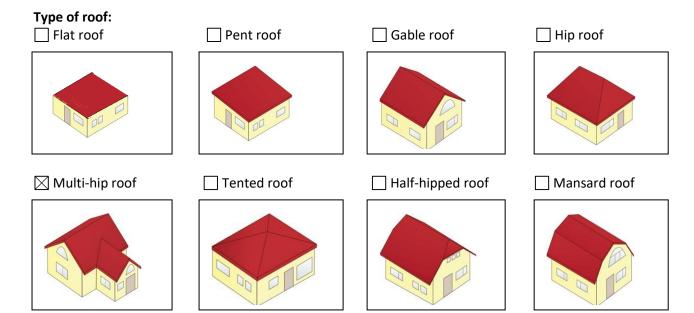
3.1.1. External walls

Walls total surface area [m²]: 1 762,9

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m²K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ²
			WAL	L type 1	
1	Lime-cast	0,03	0,88	0,218- insulated	0,3 required/0,25 recommended
2	Full brick	0,6	0,78		
3	Limecement	0,03	0,99		
	cast				
4	EPS/MW	0,16	0,039		
			WAL	L type 2	
1	Lime-cast	0,03	0,88	0,225- insulated	0,3 required/0,25 recommended
2	Full brick	0,45	0,78		
3	Limecement	0,03	0,99		
	cast				
4	EPS/MW	0,16	0,039		
			WAL	L type 3	
1	Lime-cast	0,03	0,88	1,096 – historical	0,3 required/0,25 recommended
2	Full brick	0,75	0,78	part - "must be	
3	Limecement	0,03	0,99	preserved"	
	cast				
			WAL	L type 4	
1	Lime-cast	0,03	0,88	1,333 – historical	0,3 required/0,25 recommended
2	Full brick	0,6	0,78	part - "must be	
3	Limecement	0,03	0,99	preserved"	
	cast				

Thermo-modernization (if carried out)


Year: 2017 Applied thermal insulation material: EPS + mineral wool Thickness [cm]: 16 Thermal conductivity [W/mK]: 0,039

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

3.1.2. Roof

Roof slope [°]: no data **in direction:** no data **Roof total surface area** [m²]: 662,3 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-	0,02	0,88	0,169 after heat	0,3 required/0,2 recommended
	cast			insulation	
2	Wood	0,025	0,18		
3	Air	0,22			
	space				
4	wood	0,025	0,18		
5	Gravel	0,1	0,27		
6	Full	0,06	0,78		
	brick				

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 24 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	wood	0,025	0,15	0,158	0,24 required/ 0,16 recommended
2	CP spray	0,05	0,043		

BOOSTEE-CE

3	Pste	0,5	0,08	
	board			

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 24 Thermal conductivity [W/mK]: 0,039

3.1.3. Ground floor

Floor total surface area [m²]: 687,2 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,02	1,01	1,489 (0,252	0,45 required/ 0,3 recommended
	tile			eqvivalent)	
2	Concrete	0,05	1,1		
3	Asphalt	0,005	0,21		
	strap				
4	Concrete	0,1	1,1		
5	Gravel	0,2	0,58		

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1					

Basement

Is the basement heated ? Yes No Basement walls total surface area [m²]:

Envelope material (different layers):

				1 1		
No.		Material	al Thickness	Thermal conductivity	Heat transfer coefficient for	Defined heat transfer coefficient for external wall (according to the
			[m]	[W/mK]	external wall	norm, national regulations)
					[W/m²K]	[W/m²K]
	1					

3.1.5. Windows

Type:

single window, single glazed

combined window, double glazed

combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

🔀 other (what ?)combined window, single glazed.....

Shading (sun protection):

curtains
roller shutters
wooden shutters
internal blinds
awnings
] other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: 116 Windows total surface area [m²]: 251,2 Diffusers in windows (YES or NO): No Heat transfer coefficient [W/m²K]: 2,35 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out)

Year: 2017

Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon Material: Wood Number of windows (if all windows are not replaced on the new ones): 114 Windows total surface area [m²]: 245,2 Diffusers in windows (YES or NO): no Heat transfer coefficient [W/m²K]: 0,9

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood Number of doors:5 Doors total surface area [m²]: 19,3 Heat transfer coefficient [W/m²K]: 4,5 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

Thermo-modernization (if carried out)

Year: 2017 Material: Wood Number of doors (if all doors are not replaced on the new ones): 2 Doors total surface area [m²]: 3,6 Heat transfer coefficient [W/m²K]: 1,2

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 353 348 kWh/year after investment **Energy consumption (heating)** [GJ/year or kWh/year]: 833,6 GJ/year before, 516,1 GJ/year after **Efficiency of the heating system** [%]: 88

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 64,2 GJ/year

Efficiency of the hot water preparation system [%]: 75

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): natural gas boiler for heat and natural gas boiler for hot water

Regulation and control of systems in the building:

thermostatic valves

- heat dividers
- motion sensors

electricity meters

water meters

other (what ?).....

Annual fuel consumption [kg or m³ or kWh or GJ]: 897,8 GJ/year before the investment, 580,34 GJ/year after investment

Electricity consumption [kWh/year]: 17 100

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as

for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

 $EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$

Annual demand for non renewable primary energy EP [kWh/m²/year]

I	Non	Non	Non renewable	Non renewable	Non renewable	Sum
	renewable	renewable	primary energy	primary energy	primary energy	(1+2+3+4+5)
	primary energy	primary energy	demand for	demand for	demand for	
	demand for	demand for	ventilation	preparation of	electricity	
	heating	cooling		hot water		
	1	2	3	4	5	6
	127	0	0	12	24	165

Annual final energy demand EK [kWh/m²/year]

	Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
	1	2	3	4	5	6
l	129	0	0	12	26	167

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
112	0	0	11	8	131

Energy class of the building (according to the table 2): D average energy-intensive building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: 628 CZK per month with tax Variable fee [per kWh]: 4,73 CZK per kWh Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]:

Variable fee [per GJ]: basically all fees are depended on the consumption the price is 429 CZK/MWh for the natural gas

Subscription [per month]:

Summary and evaluation of the energy building status

The external walls partly do not meet the technical requirements in terms of the value of heat transfer coefficient, but the façade is "listed "(must be preserved). The thermo-modernization in 2017 included the replacement of window and door joinery, roof and walls insulation. The modernization caused that windows and doors are characterized by low heat transfer coefficient consistent with the legal regulations. The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is high (88% and 75% respectively). In total, the building uses annually 266 488 kWh, 87% of which is for heating despite installed thermostatic valves. The energy class classifies it as an average energy intensive building. After completing the investment, the total energy consumption will be 178 294 kWh/year, 80% of which will be for heating. The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

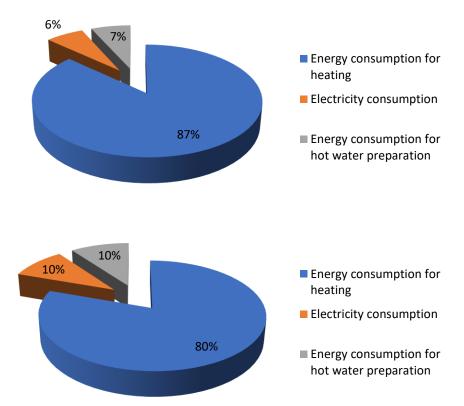


Figure 6: Energy consumption balance of the building for the PA3 – KROMERIZ basic school (before and after)

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

		PA3 – Kr	omeriz			
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected
	work	description			research	external expert
1	Preparation	Based on energy	2015	-	DONE	EAZK
		management of the				and Zlín
		building and possibility of				region
		donation Zlín region				
		decided that this school will				
		be prepared for the				
		Windows changing and				
		heat insulation of the roof				
		and heat insulation o the				
		nonhistorical wall				
2	Project	Zlín region order the	09/2015-	13 300	DONE	Mikulik
	blueprints	blueprints necessary for the	08/2016			
		further progress of the				
		project.				
3	Energy audit	EAZK supported Energy	02/2016-	600	DONE	TESPOR
		expert with all necessary	03/2016			A
		data related to the project				
4	Donation	EAZK prepared donation	03/2016	-	DONE	EAZK
_	application	application				272
5	Public	EAZK prepared blueprints	08/2016-	2900	DONE	RTS
	procurement	for the public procurement	10/2016	500.460	DONE	DTA OFIC
6	Realization of	Whole realization was done	04/2017-	500 162	DONE	PTACEK-
	windows	during summer holidays	08/2017			pozemn
	changing and					i stavby
	roof insulation and nonhistorical					
	wall heat					
7	insulation	EA7K continuously collect	06/2019	0	NOT	ΕΛ7ν
/	Evaluation of realization	EAZK continuously collect data to be able to evaluate	06/2018	0	NOT STARTE	EAZK
	realization	the project			D	
8	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK
0	project	data to be able to evaluate	10/2019	0	STARTE	
	project	the project			D	
					U	

 Table 5: Time schedule and cost estimate of preparatory activities in the PA3 Kromeriz basic school.

Table 6 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

Table 6: PA3 Kromeriz basic school - Activities plan.

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - KROMERIZ secondary pedagogical and social school

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Secondary school Owner / investor: Zlín region Year of construction: 1902 Year of use (if different from year of construction): -Gross building area [m²]: 5 232,4 Building volume [m³]: 25 629,7 Building envelope total surface area [m²]: 8 298,8 Shape factor (A/V ratio) [m⁻¹]: 0,324

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 4

Number of building users: 180 students + 35 teachers Location: City of Kromeriz is situated in the northwest part of the Zlín region cca 30 km far from Zlín.

 Available technical documentation:

 • Yes C No

 Energy audit
 Year: 2015

 Technical drawings
 Year: 2015

 Building project for thermo-modernization of the building

Figure 7: Photo of building available for the PA3 – Secondary pedagogical and social school Kroměříž (source: Energy Agency of the Zlín Region).

2015

Year:

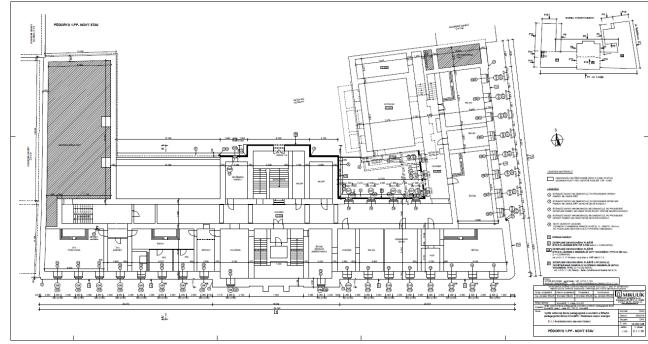


Figure 8: Typology of building available for the PA3 – Secondary pedagogical and social school Kroměříž (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

3.1.1. External walls

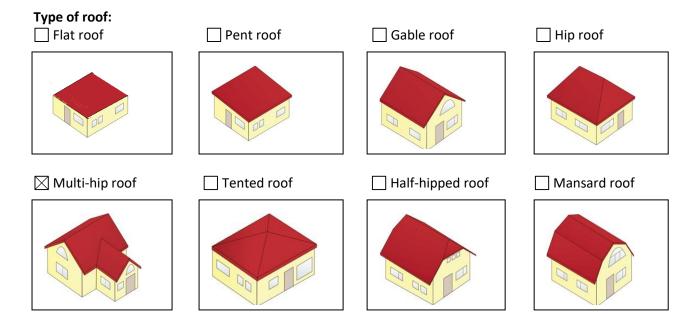
Walls total surface area [m²]: 2 863,2

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ³
			WALI	L type 1	
1	Lime-cast	0,03	0,88	0,219 - insulated	0,3 required/0,25
2	Full brick	0,45	0,78		recommended
3	Limecement-	0,03	0,99		
	cast				
4	EPS	0,16	0,039		
			L type 2		
1	Lime-cast	0,03	0,88	0,225 - insulated	0,3 required/0,25
2	Full brick	0,29	0,78		recommended
3	Limecement-	0,03	0,99		
	cast				
4	EPS	0,16	0,039		
			WAL	L type 3	
1	Lime-cast	0,03	0,7	0,936 – historical	0,3 required/0,25
2	Full brick	0,6	0,73	part	recommended
3	Limecement-	0,03	0,7		
	cast				
			WAL	type 4	
1	Lime-cast	0,03	0,7	1,096 – historical	0,3 required/0,25
2	Full brick	0,45	0,73	part	recommended
3	Limecement-	0,03	0,7		
	cast				

Thermo-modernization (if carried out)

Year: 2017 Applied thermal insulation material: EPS + mineral wool Thickness [cm]: 16 Thermal conductivity [W/mK]: 0,039


Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

³ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

3.1.2. Roof

Roof slope [°]: no data in direction: no data **Roof total surface area** [m²]:

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-	0,02	0,88	0,176 after heat	0,3 required/0,2 recommended
	cast			insulation	
2	Wood	0,025	0,18		
3	Air	0,22			
	space				
4	wood	0,025	0,18		
5	Gravel	0,15	0,27		
6	Full	0,06	0,78		
	brick				

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 22 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,138/0,142	0,24 required/ 0,16
2	Armoured	0,15	1,58		recommended

BOOSTEE-CE

	concrete		
3	wood	0,5	0,15
4	Concrete-	0,1	0,69
	Gravel		
5	Asphalt	0,01	0,21

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 28 Thermal conductivity [W/mK]: 0,037

3.1.3. Ground floor

Floor total surface area [m²]:391,2 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,02	1,01	0,388	0,45 required/ 0,3 recommended
	tile				
2	Concrete	0,05	1,1		
3	Asphalt	0,005	0,21		
	strap				
4	Concrete	0,1	1,1		
5	Gravel	0,2	0,58		

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: 1 206,7 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Ceramic tile	0,02	1,01	0,946	1,05 required/ 0,7 recommended
2	Concrete	0,05	1,1		
3	gravel	0,1	0,21		
4	Full brick	0,15	0,73		
5	Lime-cast	0,2	0,7		

Basement

Is the basement heated	?	Yes	🔀 No
Basement walls total sur	face	area [m²]:	

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

single window, single glazed

____ combined window, double glazed

combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

🔀 other (what ?)combined window, single glazed.....

Shading (sun protection):

curtains
roller shutters
wooden shutters
internal blinds
awnings
other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: all Windows total surface area [m²]: Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 2,35 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out)

Year: 2017 Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon Material: Wood Number of windows (if all windows are not replaced on the new ones): 262 Windows total surface area [m²]: 861,6 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 0,9

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood Number of doors: Doors total surface area [m²]: 27,6 Heat transfer coefficient [W/m²K]: 4,5 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

Thermo-modernization (if carried out)
Year: 2017
Material: Wood
Number of doors (if all doors are not replaced on the new ones): 8
Doors total surface area [m²]: 27,6
Heat transfer coefficient [W/m²K]: 1,2

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 896 099 kWh/year after investment **Energy consumption (heating)** [GJ/year or kWh/year]: 2 394,5 GJ/year before, 1 316,8 GJ/year after **Efficiency of the heating system** [%]: 89

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 317,1 GJ/year

Efficiency of the hot water preparation system [%]: 89

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): natural gas boiler

Regulation and control of systems in the building:

thermostatic valves

heat dividers

____ motion sensors

electricity meters

water meters

other (what ?).....

Annual fuel consumption [kg or m^3 or kWh or GJ]: 2 730,1 GJ before the investment, 1 652,4 GJ after investment

Electricity consumption [kWh/year]: 69 000

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including

fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

$$EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$$

Annual demand for non renewable primary energy EP [kWh/m²/year]

Non	Non	Non renewable	Non renewable	Non renewable	Sum
renewable	renewable	primary energy	primary energy	primary energy	(1+2+3+4+5)
primary energy	primary energy	demand for	demand for	demand for	
demand for	demand for	ventilation	preparation of	electricity	
heating	cooling		hot water		
1	2	3	4	5	6
110	0	0	22	39	171

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
110	0	0	22	42	174

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
100	0	0	16	13	129

Energy class of the building (according to the table 2): C average energy efficient building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: 628 CZK per month with tax

Variable fee [per kWh]: 4,73 CZK per kWh Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: Variable fee [per GJ]: Overall price is 846 CZK/MWh with tax (235 CZK/GJ). All parts of price depend on the consumption. Subscription [per month]:

Summary and evaluation of the energy building status

The external walls partly do not meet the technical requirements in terms of the value of heat transfer coefficient, but the façade is "listed "(must be preserved). The thermo-modernization in 2017 included the replacement of window and door joinery, roof and walls insulation. The modernization caused that windows and doors are characterized by low heat transfer coefficient consistent with the legal regulations. The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is high (89%). In total, the building uses annually 822 221 kWh, 81% of which is for heating despite installed thermostatic valves. The energy class classifies it as an average energy efficient building. After completing the investment, the total energy consumption will be 522 860 kWh/year, 70% of which will be for heating.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

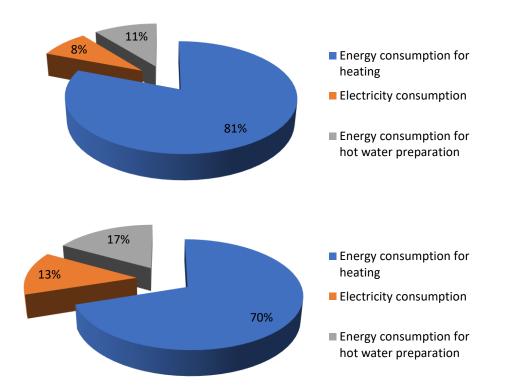


Figure 9: Energy consumption balance of the building for the PA3 – KROMERIZ secondary pedagogical and social school (before and after)

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

		PA 3 - Kro	omeriz				
No.	Preparatory work	Preparatory work description	Time schedule	Cost (EUR)	Market research	Selected external expert	
1	Preparation	Based on energy management of the building and possibility of donation Zlín region decided that this school will be prepared for the Windows changing and heat insulation of the roof and heat insulation o the nonhistorical wall	2015	-	DONE	EAZK and Zlín region	
2	Project blueprints	Zlín region order the blueprints necessary for the further progress of the project.	09/2015- 08/2016	35 000	DONE	Mikulik	
3	Energy audit	EAZK supported Energy expert with all necessary data related to the project	02/2016- 03/2016	600	DONE	TESPOR A	
4	Donation application	EAZK prepared donation application	03/2016	-	DONE	EAZK	
5	Public procurement	EAZK prepared blueprints for the public procurement	08/2016- 10/2016	3 700	DONE	RTS	
6	Realization of windows changing and roof insulation and nonhistorical wall heat insulation	Whole realization was during summer holidays	11/2016- 09/2017	1 161 890	DONE	PTACEK- pozemn i stavby	
7	Evaluation of realization	EAZK continuously collect data to be able to evaluate the project	06/2018	0	NOT STARTE D	EAZK	
8	Evaluation of the project	EAZK continuously collect data to be able to evaluate the project	10/2019	0	NOT STARTE D	EAZK	

Table 7: Time schedule and cost estimate of preparatory activities in the PA3 KromerizPedagogic school

Table 8 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

		2018									2019												2020						
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Table 8: PA3 Kromeriz Pedagogic school - Activities plan.

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - NEM UH DORMITORY

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Hospital building - dormitory **Owner / investor**: Hospital Uherske Hradiste (Zlín region is 100 % owner of the hospital)/Zlín region **Year of construction**: 1972 **Year of use** (if different from year of construction): -**Gross building area** [m²]: 1 454,5 **Building volume** [m³]: 4 653,7 **Building envelope total surface area** [m²]: 8 712,23

Shape factor (A/V ratio) [m⁻¹]: 0,25

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 4

Number of building users: 21 flats

Location: Hospital Uherske Hradiste is situated in the southwest part of the Zlín region cca 30 km from the Zlín.

Available technical docume	entation:	Yes	C No
Energy audit	Year:	2016	
Technical drawings	Year:	2016	

Building project for thermo-modernization of the building

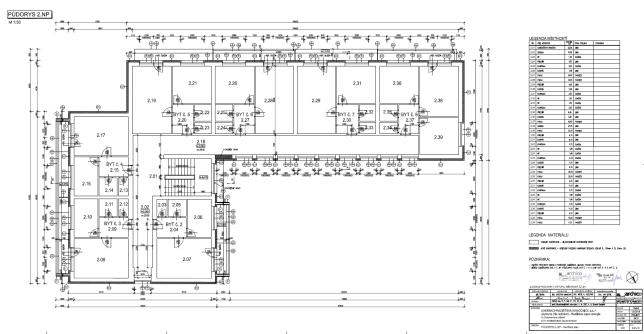

Year: 2016

Figure 10: Photo of building available for the PA3 – Dormitory (source: Energy Agency of the Zlín Region). D.T3.3.1 - Pilot actions preparation - Page 36

Figure 11: Typology of building available for the PA3 – Dormitory (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

3.1.1. External walls

Walls total surface area [m²]: 940,8

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ⁴
1	Lime-cast	0,02	0,88	0,242	0,3 required/0,25 recommended
2	Concrete	0,3	0,55		
	from slag				
3	Limecement	0,02	0,99		
	cast				

Thermo-modernization (if carried out) Year: 2018 Applied thermal insulation material: mineral wool Thickness [cm]: 0,16 Thermal conductivity [W/mK]: 0,039

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

3.1.2. Roof

Type of roof: Flat roof Pent roof Gable roof Hip roof Multi-hip roof Tented roof Half-hipped roof Mansard roof Mansard roof

⁴ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,015	0,88	0,152 after heat	0,3 required/0,2 recommended
2	Armoured concrete	0,25	1,58	insulation	
3	Gravel	0,08	0,58		
4	EPS	0,04	0,051		
5	Chipboard	0,03	0,19		
6	Concrete	0,04	0,55		
	form slag				
7	Asphalt stripes	0,04	0,21		

Thermo-modernization (if carried out) Year: 2018 Applied thermal insulation material: mineral wool Thickness [cm]: 24 Thermal conductivity [W/mK]: 0,039

3.1.3. Ground floor

Floor total surface area [m²]: 374,7 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1					

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: 493,5 **Envelope material** (different layers):

No.	Material	Thickness	Thermal conductivity	Heat transfer coefficient for	Defined heat transfer coefficient for floor (according to the norm,			
		[m]	[W/mK]	floor [W/m ² K]	national regulations) [W/m ² K]			
1								

Basement

Is the basement heated ?	Yes	🖂 No
Basement walls total surfac	e area [m ²]:	

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type: □ single window, single glazed □ combined window, double glazed □ combined window, three panes □ single-frame window, double low-emission glass, argon chamber □ single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon □ single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon □ other (what ?)
Shading (sun protection): curtains roller shutters wooden shutters internal blinds awnings other (what ?)
Material (PVC, wood, aluminum, wood-aluminum): PVC Number of windows: 102 Windows total surface area [m ²]: 247 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m ² K]: 2,52

Defined heat transfer coefficient (according to the norm, national regulations) $[W/m^2K]$: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out)
Year: 2018
Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon
Material: wood
Number of windows (if all windows are not replaced on the new ones): 102
Windows total surface area [m²]: 247
Diffusers in windows (YES or NO): NO
Heat transfer coefficient [W/m²K]: 0,9

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood Number of doors: 4 **Doors total surface area** [m²]: 41,4 Heat transfer coefficient [W/m²K]: 5,65 **Defined heat transfer coefficient** (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

Thermo-modernization (if carried out)

Year: 2018 Material: wood Number of doors (if all doors are not replaced on the new ones): 4 Doors total surface area [m²]: 41,4 Heat transfer coefficient [W/m²K]: 1,1

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 122 287 kWh/year after investment Energy consumption (heating) [GJ/year or kWh/year]: 743 GJ/year before the investment, 460,6 GJ/year after investment

Efficiency of the heating system [%]: 99

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 172,8 GJ/year

Efficiency of the hot water preparation system [%]: 99

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): District heating system. Central boiler room for hospital is power by natural gas. **Regulation and control of systems in the building:**

thermostatic valves

- heat dividers
- motion sensors
- electricity meters
- water meters

other (what ?).....

Annual fuel consumption [kg or m³ or kWh or GJ]: 915,8 GJ before the investment, 460,6 GJ after investment

Electricity consumption [kWh/year]: 5 156

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

 $EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$

Annual demand for non renewable primary energy EP [kWh/m²/year]

Non	Non	Non renewable	Non renewable	Non renewable	Sum
renewable	renewable	primary energy	primary energy	primary energy	(1+2+3+4+5)
primary energy	primary energy	demand for	demand for	demand for	
demand for	demand for	ventilation	preparation of	electricity	
heating	cooling		hot water		
1	2	3	4	5	6
57	0	0	3	15	75

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
57	0	0	3	16	76

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
52	0	0	3	4	71

Energy class of the building (according to the table 2): B energy-saving building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: Variable fee [per kWh]: 1860 CZK per kWh Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]:

Variable fee [per GJ]: Overall price is 823 CZK/MWh with tax. All parts of price depend on the consumption. Subscription [per month]:

Summary and evaluation of the energy building status

The external walls meet the technical requirements in terms of the value of heat transfer coefficient. The thermo-modernization in 2018 includes the replacement of window and door joinery, roof and walls insulation. The modernization caused that windows and doors are characterized by low heat transfer coefficient consistent with the legal regulations.

The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is very high (99%). In total, the building uses annually 259 544 kWh, 80% of which is for heating despite installed thermostatic valves. The energy class classifies it as an energy saving building. After completing the investment, the total energy consumption will be 181 100 kWh/year, 71% of which will be for heating.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

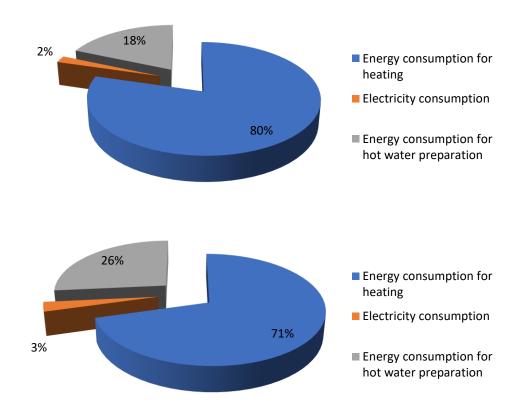


Figure 12: Energy consumption balance of the building for the PA3 – Dormitory UH hospital (before and after)

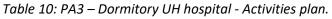
4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

		PA 3 – Dormitory Uhers	ske Hradiste hosp	ital		
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected
	work	description			research	external
						expert
1	Preparation	Based on energy	2016	-	DONE	EAZK
		management of the				and Zlín
		building and possibility of				region
		donation Zlín region				
		decided that this sbuilding				
		will be prepared for the				
		heat insulation of the roof				
		and heat insulation of the				
		walls				
2	Project	Zlín region order the	05/2016-	16000	DONE	G G
	blueprints	blueprints necessary for the	12/2016			Archico
		further progress of the				
		project.				
3	Energy audit	EAZK supported Energy	10/2016-	1700	DONE	TESPOR
		expert with all necessary	12/2016			A
		data related to the project				
4	Donation	EAZK prepared donation	12/2016	-	DONE	EAZK
	application	application				
5	Public	EAZK prepared blueprints	08/2017-		DONE	RTS
	procurement	for the public procurement	12/2017			
6	Realization of	Whole realization was done	03/2018-	79 164	DONE	Stavby
	the heat	during summer holidays	07/2018			Vanto
	insulation					
7	Evaluation of	EAZK continuously collect	05/2019	0	NOT	EAZK
	realization	data to be able to evaluate			STARTE	
		the project			D	
8	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK
	project	data to be able to evaluate			STARTE	
		the project			D	

Table 9: Time schedule and cost estimate of preparatory activities in the PA3 – Dormitory UH hospital.


Table 10 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

BOOSTEE-CE

						2(018											20	19							2	2020)	
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - NEM UH Intern medicine

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Hospital building – intern medicine Owner / investor: Hospital Uherske Hradiste (Zlín region is 100 % owner of the hospital)/Zlín region Year of construction: 2017-2018 Year of use (if different from year of construction): 2018 Gross building area [m²]: 10 171,46 Building volume [m³]: 38 261,2 Building envelope total surface area [m²]: 8 664,68 Shape factor (A/V ratio) [m⁻¹]: 0,23

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building,

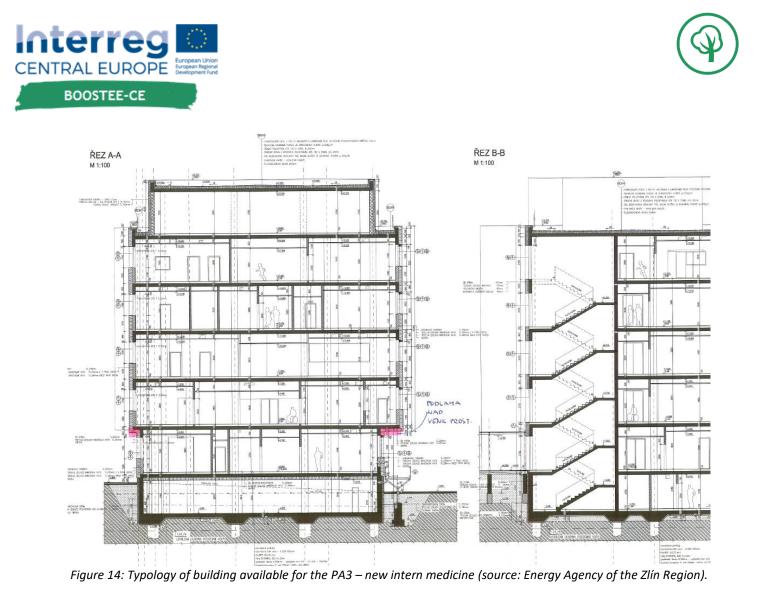
increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 6

Number of building users: -

Location: Hospital Uherske Hradiste is situated in the southwest part of the Zlín region cca 30 km from the Zlín.


Available technical docun	nentation:	💽 Yes	O No
Energy audit	Year:	2016	
Technical drawings	Year:	2016	

Building project for thermo-modernization of the building

Figure 13: Photo of building available for the PA3 – new intern medicine (source: Energy Agency of the Zlín Region).

2016

Year:

3. Energy PA building(s) profile

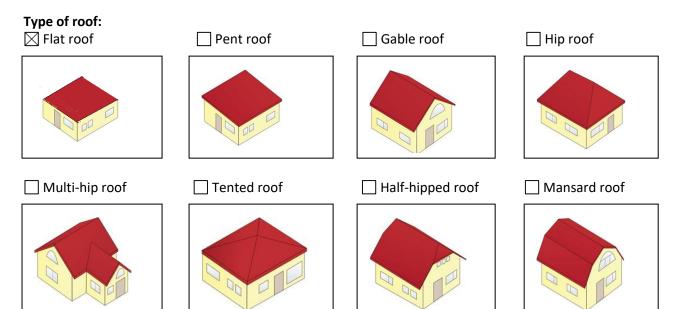
Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

3.1.1. External walls

Walls total surface area [m²]: 4 947,4



No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ⁵
1	Lime cast	0,01	0,99	0,22	0,3 required/0,25 recommended
2	Brick with	0,24	0,38		
	air spaces				
3	Mineral	0,18	0,035		
	wool				

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

3.1.2. Roof

Roof slope [°]: 0 in direction: N/A **Roof total surface area** [m²]: 1 391,9 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Armoured	0,25	1,74	0,16	0,3 required/0,2 recommended
	concrete				
2	Charbit	0,002	-		
3	EPS 150S	0,23	0,035		
4	Hydroisolation	0,002	0,16		

⁵ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

foil			
	foil		

3.1.3. Ground floor

Floor total surface area [m²]: 1515,5 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Concrete	0,07	1,16	0,409	0,45 required/ 0,3 recommended
2	EPS 70 Z	0,08	0,039		
3	Armoured	0,3	1,48		
	concrete				

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]:

Envelope material (different layers):

			Thermal	Heat transfer	Defined heat transfer coefficient
No	Material	Thickness	conductivity	coefficient for	for floor (according to the norm,
		[m]	[W/mK]	floor [W/m ² K]	national regulations) [W/m ² K]
1					

Basement

Is the basement heated ? Yes No Basement walls total surface area [m²]:

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

single window, single glazed

____ combined window, double glazed

____ combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

other (what ?)

Shading (sun protection):

\boxtimes	curtains
	roller shutters
	wooden shutters
	internal blinds
	awnings
	other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): PVC Number of windows: 262 Windows total surface area [m²]: 723,6 Diffusers in windows (YES or NO): No Heat transfer coefficient [W/m²K]: 0,9 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

3.1.6. Doors

Material (wood, aluminum, PVC etc.): PVC

Number of doors: 6

Doors total surface area [m²]: 33,6

Heat transfer coefficient [W/m²K]: 1,2

Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 8 416 884 kWh/year **Energy consumption (heating)** [GJ/year or kWh/year]: 2 447 251 kWh/year

Efficiency of the heating system [%]: 93

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 255 816 kWh/year

Efficiency of the hot water preparation system [%]: 94

Energy consumption (cooling) [GJ/year or kWh/year]: 5 889 kWh/year + 150 909 kWh/year for ventilation + 940 970 kWh/year for air adjustment

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): District heating system. Central boiler room for hospital is power by natural gas.

Regulation and control of systems in the building:

thermostatic valves
heat dividers
motion sensors
electricity meters
water meters
other (what ?).....
Annual fuel consumption [kg or m³ or kWh or GJ]: 4 516 000 kWh

Electricity consumption [kWh/year]: 1 815 406

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W **Number of lighting points**: -**Ventilation type** (according to the table 1): hybrid ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

 $EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$

Non renewable primary energy demand for heating	Non renewable primary energy demand for cooling	Non renewable primary energy demand for ventilation + air adjustment	Non renewable primary energy demand for preparation of hot water	Non renewable primary energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
264	3	321	28	210	826

Annual demand for non renewable primary energy EP [kWh/m²/year]

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation + air adjustment	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
264	3	342	28	224	861

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation + air adjustment	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
240	1	107	25	70	443

Energy class of the building (according to the table 2): A low-energy building

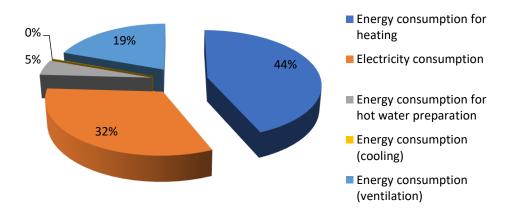
The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

This building is used as a hospital, which means that Energy class has another indicators in kWh/(m² year)

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: Variable fee [per kWh]: 1 860 CZK per kWh Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]


Fixed fee [per MW-month]: Variable fee [per GJ]: Overall price is 823 CZK/MWh with tax. All parts of price depend on the consumption. Subscription [per month]:

Summary and evaluation of the energy building status

The external partitions meet the technical requirements in terms of the value of heat transfer coefficient. This is the new building built in 2018.

The building's energy system includes the heating system, the hot water preparation system, cooling system and the power system. The efficiency of the heating system and the preparation of hot water is very high (93% and 94% respectively). In total, the building will be use annually 5 616 241 kWh, 44% of which is for heating. The energy class classifies it as an low-energy building.

The ventilation is hybrid, so is the mix of natural and mechanical ventilation.

Figure 15: Energy consumption balance of the building for the PA3 – new intern medicine.

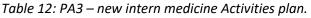
4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

	PA	A 3 – Uherske Hradiste hospital	new intern medie	cine building		
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected
	work	description			research	external
						expert
1	Preparation	Based on hospital	2015	-	DONE	EAZK
		development strategy is				and Zlín
		going to be build new				region
		building.				
2	Project	Zlín region order the	2015-2016	-	DONE	G G
	blueprints	blueprints necessary for the				Archico
		further progress of the				
		project.				
3	Certificate of	Necessary document for	2016	-	DONE	Ing.
	energy class	the allowances				Lepcio
4	Realization of	Whole realization	04/2017-	14 325 918	DONE	GEOSAN
	the building		09/2018			GROUP
						a.s. a
						Zlínstav
						a.s.
5	Evaluation of	EAZK continuously collect	05/2019	0	NOT	EAZK
	realization	data to be able to evaluate			STARTE	
		the project			D	
6	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK
	project	data to be able to evaluate			STARTE	
		the project			D	

Table 11: Time schedule and cost estimate of preparatory activities in the PA3 – newintern medicine.


Table 12 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

BOOSTEE-CE

						20	018							2019								2020							
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - NEM UH PATHOLOGY

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Hospital building - pathology Owner / investor: Hospital Uherske Hradiste (Zlín region is 100 % owner of the hospital)/Zlín region Year of construction: 1917 Year of use (if different from year of construction): -Gross building area [m²]: 749,4 Building volume [m³]: 2 787,9 Building envelope total surface area [m²]: 1 362,35 Shape factor (A/V ratio) [m⁻¹]: 0,49

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building,

increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 2

Number of building users: 3 doctors, 8 laboratory technicians, 2 other staff, 1 administrative worker and 1 sanitary worker

Location: Hospital Uherske Hradiste is situated in the southwest part of the Zlín region cca 30 km from the Zlín.

Available technical documentation:Image: Second second

Building project for thermo-modernization of the building

Year: 2016

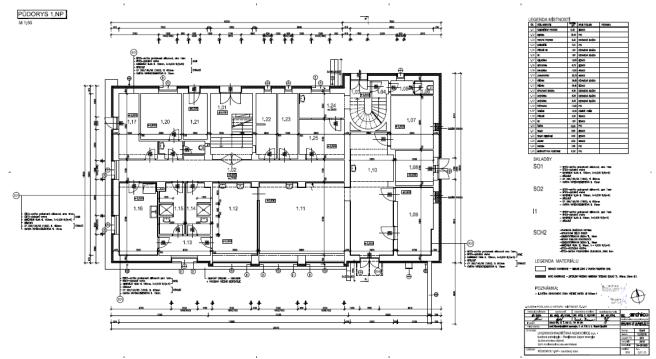


Figure 16: Photo of building available for the PA3 – Pathology (source: Energy Agency of the Zlín Region).

BOOSTEE-CE

Figure 17: Typology of building available for the PA3 – Pathology (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

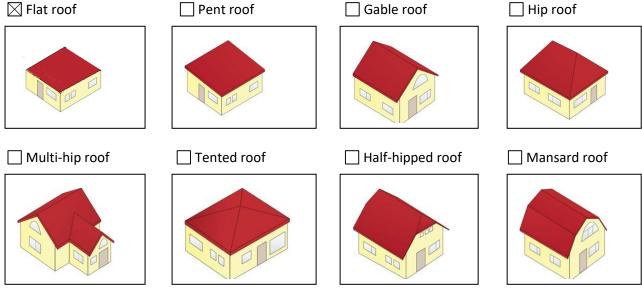
3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

3.1.1. External walls

Walls total surface area [m²]: 511

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m²K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ⁶
			WAL	L type 1	
1	Lime-cast	0,02	0,88	0,24	0,3 required/0,25
2	Brick with air	0,45	0,78		recommended
	spaces				
3	Limecement	0,03	0,99		
	cast				
			WAL	L type 2	
1	Lime-cast	0,02	0,88	0,231	0,3 required/0,25
2	Brick with air	0,6	0,78		recommended
	spaces				
3	Limecement	0,03	0,99		
	cast				


Thermo-modernization (if carried out)

Year: 2018 Applied thermal insulation material: mineral wool Thickness [cm]: 0,16 Thermal conductivity [W/mK]: 0,039

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

3.1.2. Roof

Type of roof:

⁶ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

Roof slope [°]: 0 in direction: N/A **Roof total surface area** [m²]: 374,7 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]								
1	Lime-cast	0,02	0,88	0,169 after heat	0,3 required/0,2 recommended								
2	Armoured	0,25	1,58	insulation									
	concrete												
3	Asphalt	0,001	0,21										
	stripes												
4	Dross	0,15	0,27										
5	Concrete	0,05	1,23										
6	Asphalt	0,002	0,21										
	stripes												
7	Concrete	0,03	1,23										
8	Asphalt stripes	0,005	0,21										

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: EPS 100 S Thickness [cm]: 24 Thermal conductivity [W/mK]: 0,037

3.1.3. Ground floor

Floor total surface area [m²]: 374,7 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,02	1,01	1,73 (0,375	0,45 required/ 0,3 recommended
	tiles			equivalent)	
2	Concrete	0,08	1,1		
3	Asphalt	0,005	0,21		
	straps				
4	Concrete	0,15	1,1		
5	Gravel	0,1	0,58		

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: 493,5

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1					

Basement

Is the basement heated ?	Yes	🔀 No

Basement walls total surface area [m²]:

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

- single window, single glazed
- combined window, double glazed
- combined window, three panes
- single-frame window, double low-emission glass, argon chamber
- single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon
- single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon
- other (what ?)

Shading (sun protection):

$\boxtimes \mathfrak{c}$	curtains
l r	oller shutters
□ \	wooden shutters
i	nternal blinds
ā	awnings
	other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): PVC Number of windows: Windows total surface area [m²]: 82,7 Diffusers in windows (YES or NO): No Heat transfer coefficient [W/m²K]: 1,2 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood

Number of doors: 5

Doors total surface area [m²]: 19,2

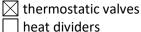
Heat transfer coefficient [W/m²K]: 1,2

Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 73 620 kWh/year after investment Energy consumption (heating) [GJ/year or kWh/year]: 387,9 GJ/year before the investment, 249,5 GJ/year after investment


Efficiency of the heating system [%]: 99

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 6,1 GJ/year

Efficiency of the hot water preparation system [%]: 99

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): District heating system. Central boiler room for hospital is power by natural gas. Regulation and control of systems in the building:

motion sensors

electricity meters

water meters

other (what ?).....

Annual fuel consumption [kg or m³ or kWh or GJ]: 394 GJ before the investment, 255,6 GJ after investment Electricity consumption [kWh/year]: 9 800

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's

user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

 $EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$

Annual demand for non renewable primary energy EP [kWh/m²/year]

Non renewable primary energy demand for heating	Non renewable primary energy demand for cooling	Non renewable primary energy demand for ventilation	Non renewable primary energy demand for preparation of hot water	Non renewable primary energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
40	10	0	32	42	124

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
40	9	0	30	39	118

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
36	3	0	10	13	62

Energy class of the building (according to the table 2): C average energy efficient building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

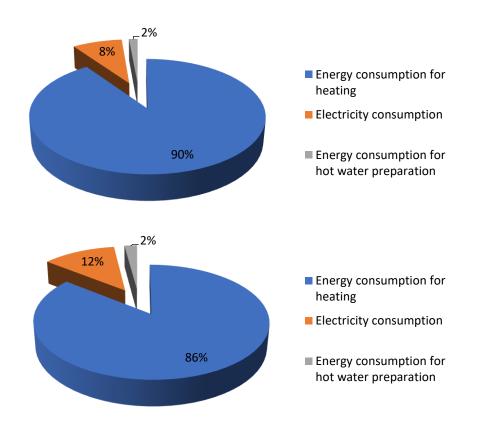
Fixed fee [per MW-month]:

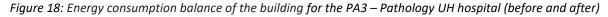
Variable fee [per kWh]: 1860 CZK per kWh Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]:

Variable fee [per GJ]: Overall price is 823 CZK/MWh with tax. All parts of price depend on the consumption. Subscription [per month]:




Summary and evaluation of the energy building status

The external partitions meet the technical requirements in terms of the value of heat transfer coefficient. The thermo-modernization in 2017 and 2018 includes the roof and walls insulation.

The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is very high (99%). In total, the building uses annually 119 244 kWh, 90% of which is for heating despite installed thermostatic valves. The energy class classifies it as an average energy efficient building. After completing the investment, the total energy consumption will be 80 799 kWh/year, 86% of which will be for heating.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

BOOSTEE-CE

		PA 3 – Pathology Uhers	ske Hradiste hosp	ital		
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected
	work	description			research	external
						expert
1	Preparation	Based on energy	2016	-	DONE	EAZK
		management of the				and Zlín
		building and possibility of				region
		donation Zlín region				
		decided that this sbuilding				
		will be prepared for the				
		heat insulation of the roof				
		and heat insulation of the				
		walls				
2	Project	Zlín region order the	05/2016-	16000	DONE	G G
	blueprints	blueprints necessary for the	12/2016			Archico
		further progress of the				
		project.				
3	Energy audit	EAZK supported Energy	10/2016-	1700	DONE	TESPOR
		expert with all necessary	12/2016			A
		data related to the project				
4	Donation	EAZK prepared donation	12/2016	-	DONE	EAZK
	application	application				
5	Public	EAZK prepared blueprints	08/2017-		DONE	RTS
	procurement	for the public procurement	12/2017			
6	Realization of	Whole realization was done	03/2018-	79 164	DONE	Stavby
	the heat	during summer holidays	07/2018			Vanto
	insulation					
7	Evaluation of	EAZK continuously collect	05/2019	0	NOT	EAZK
	realization	data to be able to evaluate			STARTE	
		the project			D	
8	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK
	project	data to be able to evaluate			STARTE	
		the project			D	

Table 13: Time schedule and cost estimate of preparatory activities in the PA3 -
Pathology.

Table 14 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

BOOSTEE-CE

			2018							2019								2020											
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Table 14: PA3 - Pathology Activities plan.

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - Valasske Klobouky grammar school

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Grammar School Owner / investor: Zlín region Year of construction: 1906 historical part and 1995 newer part Year of use (if different from year of construction): -Gross building area [m²]: 4 649,83 Building volume [m³]: 20 835 Building envelope total surface area [m²]: 11 491,27 Shape factor (A/V ratio) [m⁻¹]: 0,55

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building,

increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 4

Number of building users: 210 students + 23 teachers + 11 other stuff

Location: Valasske Klobouky city is situated in the southeast part of the Zlín region cca 35 km far from Zlín by car.

Available technical documentation:	• Yes • O N	0		
Energy audit Year:	2016			
Technical drawings Year:	2015			_
Building project for thermo-modernia	ation of the bu	ilding	Year: 2015	
III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				

Figure 19: Photo of building available for the PA3 – Grammar school Valasske Klobouky (source: Energy Agency of the Zlín Region).

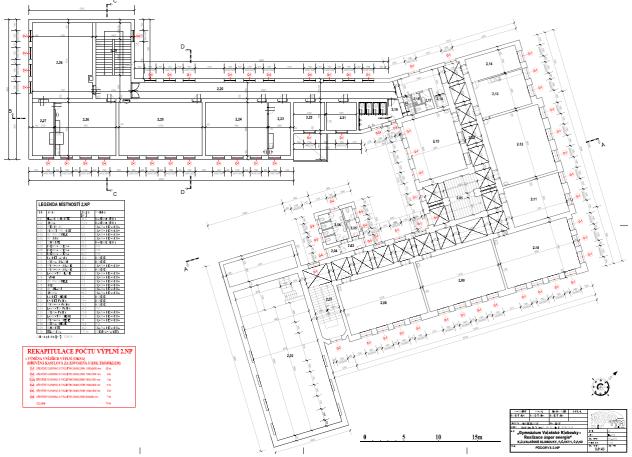


Figure 20: Typology of building available for the PA3 – Grammar school Valasske Klobouky (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

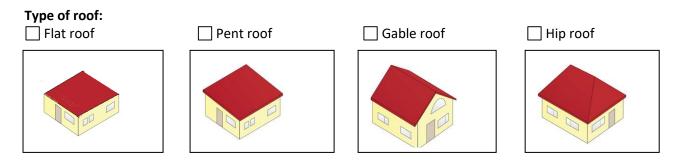
Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

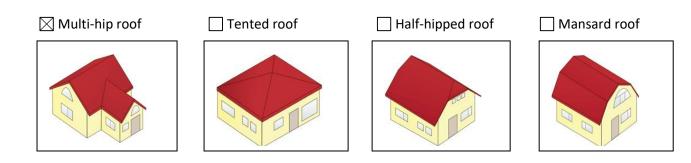
3.1.1. External walls

Walls total surface area [m²]: 3 115,6



No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K] ⁷					
			WALL 1 – newe	er part from 1995						
1	Lime-cast	0,02	0,88	0,49	0,3 required/0,25					
2	Brick with air spaces	0,44	0,187		recommended					
3	Limecement cast	0,02	0,99							
	WALL 2 – historic part from 1906									
1	Lime-cast	0,02	0,88	0,944	0,3 required/0,25					
2	Full brick	0,75	0,78		recommended					
3	Limecement cast	0,03	0,99							
			WALL 3 – histo	ric part from 1906						
1	Lime-cast	0,02	0,88	1,108	0,3 required/0,25					
2	Full brick	0,6	0,78		recommended					
3	Limecement	0,03	0,99							
	cast									
			WALL 4– histor	ic part from 1906						
1	Lime-cast	0,02	0,88	1,35	0,3 required/0,25					
2	Full brick	0,45	0,78		recommended					
3	Limecement cast	0,03	0,99							

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).


3.1.2. Roof

⁷ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)

Roof slope [°]: no data **in direction**: no data **Roof total surface area** [m²]: 1 574,6 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,152 after heat	0,3 required/0,2 recommended
2	Dry wood	0,014	0,224	insulation	
	files				
3	Wood	0,025	0,18		
4	Climatizer	0,16	0,043		
5	Wood	0,025	0,18		

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool

Thickness [cm]: 20

Thermal conductivity [W/mK]: 0,039

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,184 after heat	0,24 required/ 0,16
2	Wood	0,03	0,18	insulation	recommended
3	Air space	0,3	-		
4	Wood	0,03	0,18		
5	Trapezial	0,002	58		
	metal plate				
6	Concrete	0,05	1,3		

Thermo-modernization (if carried out)

Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 24 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers): Only layers that improve heat transfer

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m²K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,147 after heat	0,24 required/ 0,16 recommended
2	Dry Wood	0,014	0,224	insulation	
3	Wood	0,025	0,18		
4	Climatizer	0,16	0,043		
5	wood	0,025	0,18		

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: PIR isolation and mineral wool Thickness [cm]: 10 and 16 Thermal conductivity [W/mK]: 0,022 and 0,039

3.1.3. Ground floor

Floor total surface area [m²]: 1 542,8 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	PVC	0,005	0,16	1,553 (0,388	0,45 required/ 0,3 recommended
2	Concrete	0,05	1,1	equivalent)	
3	Asphalt	0,005	0,21		
	straps				
4	Concrete	0,15	1,1		
5	gravel	0,15	0,58		

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1	Ceramic	0,008	1,01	0,813 (0,285	0,45 required/ 0,3 recommended
	pave			equivalent)	
2	Disperse	0,005	0,6		
	glue				
3	Concrete	0,045	1,1		
4	Asphalt	0,0002	0,21		
	straps				
5	Prefizol	0,04	0,047		
6	Concrete	0,05	1,1		
7	Asphalt	0,005	0,21		
	straps				
8	concrete	0,15	1,1		

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]:

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]
1					

Basement

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

single window, single glazed

combined window, double glazed

combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

Shading (sun protection):

\boxtimes	curtains

- ____ roller shutters
- wooden shutters
- ____ internal blinds awnings

other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: 270 Windows total surface area [m²]: 809,6 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 2,35

Defined heat transfer coefficient (according to the norm, national regulations) $[W/m^2K]$: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out) Year: 2017 Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon Material: Wood Number of windows (if all windows are not replaced on the new ones): 270 Windows total surface area [m²]: 809,6 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 0,9 for classic windows and 1,1 for roof windows

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood Number of doors: 5 Doors total surface area [m²]: 22,9 Heat transfer coefficient [W/m²K]: 4,5 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3

Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 1121291 kWh/year after investment

Energy consumption (heating) [GJ/year or kWh/year]: 1 621,4 GJ/year before, 1 089,7 GJ/year after **Efficiency of the heating system** [%]: 88

Energy consumption (hot water preparation) [GJ/year or kWh/year]: 263 GJ/year

Efficiency of the hot water preparation system [%]: 88

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): natural gas boiler for heat and natural gas boiler for hot water

Regulation and control of systems in the building:

thermostatic valves

heat dividers

____ motion sensors

____ electricity meters

_____ water meters

____ other (what ?).....

Annual fuel consumption [kg or m³ or kWh or GJ]: 1884,4 GJ before the investment, 1352,7 GJ after investment

Electricity consumption [kWh/year]: 68 700 Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W **Number of lighting points**: -**Ventilation type** (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

$$EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$$

Non renewable primary energy demand for heating	Non renewable primary energy demand for cooling	Non renewable primary energy demand for ventilation	Non renewable primary energy demand for preparation of hot water	Non renewable primary energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
185	0	0	11	45	241

Annual demand for non renewable primary energy EP [kWh/m²/year]

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
185	0	0	11	48	244

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for cooling	Utility energy demand for ventilation	Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
166	0	0	10	15	191

D.T3.3.1 - Pilot actions preparation - Page 72

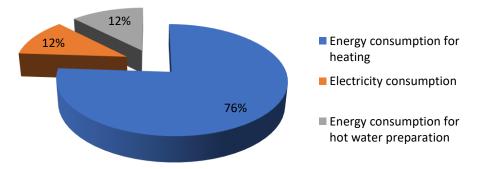
Energy class of the building (according to the table 2): E energy-consuming building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: 3,76 CZK per month with tax (average for all supply points) Variable fee [per kWh]: 1131 CZK per kWh (average for all supply points) Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]


Fixed fee [per MW-month]: Variable fee [per GJ]: Overall price is 846 CZK/MWh with tax (235 CZK/GJ). All parts of price depend on the consumption. Subscription [per month]:

Summary and evaluation of the energy building status

The external walls and doors do not meet the technical requirements in terms of the value of heat transfer coefficient. The façade is "listed "(must be preserved). The thermo-modernization in 2017 included the replacement of window joinery and roof insulation.

The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is high (88%). In total, the building uses annually 592 143 kWh, 76% of which is for heating despite installed thermostatic valves. The energy class classifies it as an energy consuming building. After completing the investment, the total energy consumption will be 444 449 kWh/year, 68% of which will be for heating.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

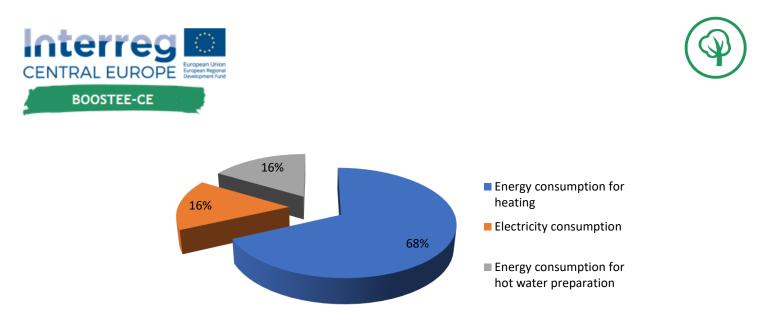


Figure 21: Energy consumption balance of the building for the PA3 – Valasske Klobouky grammar school (before and after)

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

	PA 3 – Valasske Klobouky										
No.	Preparatory work	Preparatory work description	Time schedule	Cost (EUR)	Market research	Selected external expert					
1	Preparation	Based on energy management of the building and possibility of donation Zlín region decided that this school will be prepared for the Windows changing and heat insulation of the roof and heat insulation o the non-historic wall	2015	-	DONE	EAZK and Zlín region					
2	Project blueprints	Zlín region order the blueprints necessary for the further progress of the project.	09/2015- 08/2016	19 550	DONE	Projekt- tým Zlín, spol. s.r.o.					
3	Energy audit	EAZK supported Energy expert with all necessary	02/2016- 03/2016	500	DONE	TESPOR A					

BOOSTEE-CE

		data valatad ta tha wvalaat				
		data related to the project	03/2016			
4	Donation	Donation EAZK prepared donation		-	DONE	EAZK
	application	application				
5	Public	EAZK prepared blueprints	08/2016-	3 630	DONE	RTS
	procurement	for the public procurement	10/2016			
6	Realization of	Whole realization was done	04/2017-	743 000	DONE	3V & H,
	windows	during summer holidays	08/2017			s.r.o.
	changing and					
	roof insulation					
	and non-historic					
	wall heat					
	insulation					
7	Evaluation of	EAZK continuously collect	06/2018	0	NOT	EAZK
	realization	data to be able to evaluate			STARTE	
		the project			D	
8	Evaluation of the EAZK continuously collect		10/2019	0	NOT	EAZK
	project	data to be able to evaluate			STARTE	
		the project			D	

Table 15: Time schedule and cost estimate of preparatory activities in the PA3 – Valasske Klobouky grammar school.

Table 16 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

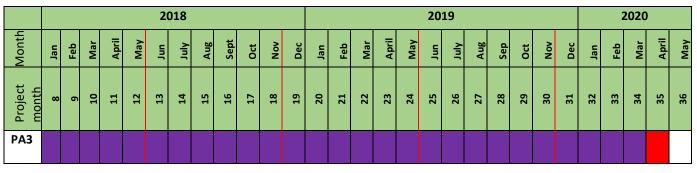


Table16: PA3 Grammar school Valasske klobouky Activities plan.

start	of	PA preparations	PA	PA monitoring/evaluation	end of	end of
WPT3			implementation		PΔ	WPT3
VVI 13			implementation		17	

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

PILOT ACTION - PA3. Zero-energy public buildings in Zlin Region (CZ) - Vsetin

2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Grammar School and secondary school

Owner / investor: Zlín region

Year of construction: Beginning of 20th century

Year of use (if different from year of construction): -

Gross building area [m²]: 2 929,99

Building volume [m³]: 13 476,4

Building envelope total surface area [m²]: 4 722,1

Shape factor (A/V ratio) [m⁻¹]: 0,35

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

Typology (number of floors): 3

Number of building users: 276 students and 20 teachers and other staff

2016

2015

Location: Vsetin city is situated in the northeast part of the Zlín region cca 35 km far from Zlín by car.

C No

Available technical documentation:

Energy audit Year:

Technical drawings Year:

Building project for thermo-modernization of the building

Year:	2015
-------	------

Figure 22: Photo of building available for the PA3 – Secondary school in Vsetin (source: Energy Agency of the Zlín Region).

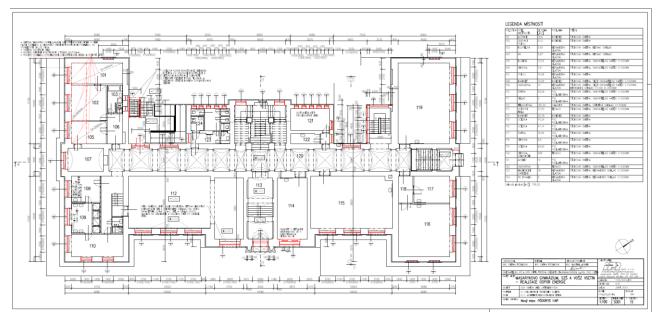


Figure 23: Typology of building available for the PA3 – Secondary school in Vsetin (source: Energy Agency of the Zlín Region).

3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

3.1. External partitions

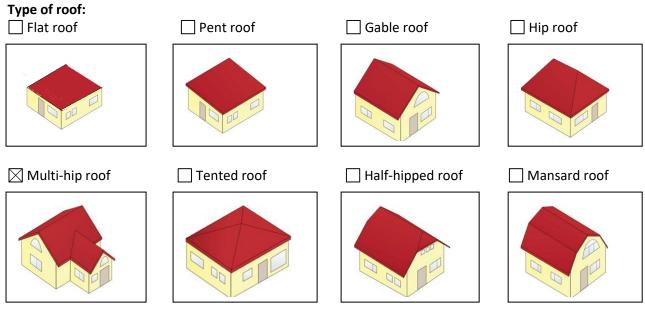
The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

3.1.1. External walls

Walls total surface area [m²]: 2 053,9 Envelope material (different layers):

	• •		-	11	
			Thermal	Heat transfer	Defined heat transfer
No.	Material	Thickness	conductivity	coefficient for	coefficient for external wall
		[m]	[W/mK]	external wall	(according to the norm,
				[W/m²K]	national regulations) [W/m ² K] ⁸
			WALL 1 -	historic wall	
1	Lime-cast	0,03	0,88	0,936	0,3 required/0,25
2	Brick with air	0,75	0,78		recommended
	spaces				
3	Limecement	0,03	0,99		
	cast				
			WALL 2 –	historic wall	
1	Lime-cast	0,03	0,88	1,096	0,3 required/0,25
2	Full brick	0,6	0,78		recommended
3	Limecement	0,03	0,99		
	cast				
			WALL 3 –	historic wall	
1	Lime-cast	0,03	0,88	1,333	0,3 required/0,25
2	Full brick	0,45	0,78		recommended
3	Limecement	0,03	0,99		
	cast				
	WA	LL 4– non his	toric wall (wall rel	ated to the stirs to ga	arret) - insulated
1	Lime-cast	0,03	0,88	0,224	0,3 required/0,25
2	Full brick	0,29	0,78		recommended
3	Limecement	0,03	0,99		
	cast				
4	EPS F	0,16	0,037		

⁸ If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)



Thermo-modernization (if carried out) – only for 22,8 m² wall inside Year: 2017 Applied thermal insulation material: EPS 100 F Thickness [cm]: 16 Thermal conductivity [W/mK]: 0,037

Thermo-modernization of the fasade is not possible because the building is "listed "(must be preserved).

Roof slope [°]: no data in direction: no data Roof total surface area [m²]: 987,1 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-	0,02	0,88	0,169 after heat	0,3 required/0,2 recommended
	cast			insulation	
2	Wood	0,025	0,18		
3	Air	0,22	-		
	space				
4	Wood	0,025	0,18		

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 26 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m²K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-	0,02	0,88	0,168 after heat	0,3 required/0,2 recommended
	cast			insulation	
2	Wood	0,025	0,18		
3	Air	0,3	-		
	space				
4	Wood	0,03	0,18		
5	Asphalt	0,001	0,21		
6	Sand	0,03	0,95		
7	Full	0,065	0,86		
	bricks				

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 26 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers): Only layers that improve heat transfer

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m²K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,175 after heat	0,3 required/0,2 recommended
2	Wood	0,025	0,224	insulation	
3	Air space	0,4	-		
4	Chipboard	0,025	0,18		
5	EPS 100 Z	0,05	0,037		
6	Asphalt	0,001	0,21		
7	Concrete	0,05	1,3		

Thermo-modernization (if carried out)

Year: 2017 Applied thermal insulation material: PIR isolation and mineral wool Thickness [cm]: 20 Thermal conductivity [W/mK]: 0,039

Envelope material (different layers): Only layers that improve heat transfer

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for roof [W/m ² K]	Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m ² K]
1	Lime-cast	0,02	0,88	0,139 after heat	0,3 required/0,2 recommended
2	Armoured	0,08	1,58	insulation	
	concrete				

BOOSTEE-CE

3	EPS	0,05	0,044
4	Concrete	0,08	1,3
5	Asphalt	0,015	0,21

Thermo-modernization (if carried out) Year: 2017 Applied thermal insulation material: mineral wool Thickness [cm]: 26 Thermal conductivity [W/mK]: 0,037

3.1.3. Ground floor

Floor total surface area [m²]: 493,5 Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]					
1	Ceramic	0,008	1,01	1,641 (0,388	0,45 required/ 0,3 recommended					
	tiles			equivalent)						
2	Concrete	0,13	1,1	1,1						
3	Asphalt	0,005	0,21							
	straps									
4	Concrete	0,15	1,1							
5	gravel	0,15	0,58							

3.1.4. Basement ceiling (if the building has a basement)

Total surface area [m²]: 493,5 **Envelope material** (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for floor [W/m ² K]	Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m ² K]						
1	Ceramic tiles	0,004	1,01	0,796	1,05 required/ 0,7 recommended						
2	Concrete	0,02	1,1								
3	Armoured concrete	0,12	1,34								
4	Gravel	0,13	0,21								
5	Brick with	0,15	0,73								
	air spaces										
6	Lime cast	0,02	0,7								

Basement

Is the basement heated ? \Box Yes \boxtimes No Basement walls total surface area $[m^2]$:

Envelope material (different layers):

No.	Material	Thickness [m]	Thermal conductivity [W/mK]	Heat transfer coefficient for external wall [W/m ² K]	Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m ² K]
1					

3.1.5. Windows

Type:

single window, single glazed

combined window, double glazed

combined window, three panes

single-frame window, double low-emission glass, argon chamber

single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner glass of low-emission glass, the chambers between the glasses are filled with argon

single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon

🔀 other (what ?)combined window, single glazed.....

Shading (sun protection):

\ge	curtains
] roller shutters
] wooden shutters
] internal blinds
	awnings
] other (what ?)

Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: Windows total surface area [m²]: 580 Diffusers in windows (YES or NO): No Heat transfer coefficient [W/m²K]: 2,35 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,5 requested/1,2 recommended

Thermo-modernization (if carried out)

Year: 2017 Type of windows: single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers between the glasses are filled with argon Material: Wood Number of windows (if all windows are not replaced on the new ones): 165 Windows total surface area [m²]: 580 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 1,0

3.1.6. Doors

Material (wood, aluminum, PVC etc.): Wood Number of doors: 5 **Doors total surface area** [m²]: 25,7 Heat transfer coefficient [W/m²K]: 4,5 **Defined heat transfer coefficient** (according to the norm, national regulations) [W/m²K]: 3,5 requested/2,3 recommended

Thermo-modernization (if carried out) Year: 2016 Material: Wood Number of doors (if all doors are not replaced on the new ones): 3 Doors total surface area [m²]: 16 Heat transfer coefficient [W/m²K]: 1,2 and 2,3

3.2. Systems energy data

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [GJ/year or kWh/year]: 553 797 kWh/year after investment Energy consumption (heating) [GJ/year or kWh/year]: district heating system measures only one consumption for energy for heating and preparing of hot water

Efficiency of the heating system [%]: 99

Energy consumption (hot water preparation) [GJ/year or kWh/year]: district heating system measures only one consumption for energy for heating and preparing of hot water

Efficiency of the hot water preparation system [%]: 99

Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system

Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler, cogeneration, RES etc.): District heating system

Regulation and control of systems in the building:

 \bowtie thermostatic values

- heat dividers
- motion sensors
- electricity meters
- water meters

other (what ?)..... Annual fuel consumption [kg or m³ or kWh or GJ]: 1 108,4 GJ before the investment, 791,3GJ after

investment

Electricity consumption [kWh/year]: 59 700

Ordered power [MW]: -

Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent lamps

Power of light bulbs [W]: fluorescent tubes 40-200 W

Number of lighting points: -

Ventilation type (according to the table 1): natural ventilation

Building energy profile

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

 $EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$

Annual demand for non renewable primary energy EP [kWh/m²/year]

Non renewable primary energy demand for	Non renewable primary energy demand for	Non renewable primary energy demand for ventilation	Non renewable primary energy demand for preparation of	Non renewable primary energy demand for electricity	Sum (1+2+3+4+5)
heating	cooling		hot water		
1	2	3	4	5	6
121	0	0	6	60	187

Annual final energy demand EK [kWh/m²/year]

Final energy demand for heating	Final energy demand for cooling	Final energy demand for ventilation	Final energy demand for preparation of hot water	Final energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
133	0	0	7	64	204

Annual utility energy demand EU [kWh/m²/year]

Utility energy demand for heating	Utility energy demand for coolingUtility energy demand for ventilation2300		Utility energy demand for preparation of hot water	Utility energy demand for electricity	Sum (1+2+3+4+5)
1	2	3	4	5	6
121	0	0	6	20	147

Energy class of the building (according to the table 2): D average energy-intensive building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: 3,76 CZK per month with tax (average for all supply points) Variable fee [per kWh]: 1131 CZK per kWh (average for all supply points) Subscription [per month]: -

Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]:

Variable fee [per GJ]: Overall price is 846 CZK/MWh with tax (235 CZK/GJ). All parts of price depend on the consumption.

Subscription [per month]:

Summary and evaluation of the energy building status

The external walls partly do not meet the technical requirements in terms of the value of heat transfer coefficient. The façade is "listed "(must be preserved). The thermo-modernization in 2016 and 2017 included the replacement of window and doors joinery, roof and walls (partly) insulation.

The building's energy system includes the heating system, the hot water preparation system and the power system. The efficiency of the heating system and the preparation of hot water is very high (99%). The energy class classifies it as an average energy intensive building.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

PA 3 – Vsetin													
No.	Preparatory	Preparatory work	Time schedule	Cost (EUR)	Market	Selected							
	work	description			research	external							
						expert							
1	Preparation	Based on energy	2015	-	DONE	EAZK							
		management of the				and Zlín							
		building and possibility of				region							
		donation Zlín region											
		decided that this school will											
		be prepared for the											
		Windows changing and											
		heat insulation of the roof											
		and heat insulation o the											
		non-historic wall											
2	Project	Zlín region order the	09/2015-	15000	DONE								
	blueprints	blueprints necessary for the	08/2016			IPR spol.							
		further progress of the				S.r.o.							

BOOSTEE-CE

		project.						
3	Energy audit	EAZK supported Energy	02/2016-	1700	DONE	TESPOR		
		expert with all necessary	03/2016			А		
		data related to the project	pported Energy ith all necessary ed to the project02/2016- 17001700Ied to the project03/2016-Iepared donation oplication03/2016-Ipared blueprints blic procurement ummer holidays08/2016- 09/2017II					
4	Donation	EAZK prepared donation	03/2016	-	DONE	EAZK		
	application	application						
5	Public	EAZK prepared blueprints	08/2016-		DONE	RTS		
	procurement	for the public procurement	10/2016					
6	Realization of	Whole realization was done	06/2017-	642 690	DONE	TM stav		
	windows	during summer holidays	09/2017			spol.		
	changing and					s r.o.		
	roof insulation							
	and non-historic							
	wall heat							
	insulation							
7	Evaluation of	EAZK continuously collect	06/2018	0	NOT	EAZK		
	realization	data to be able to evaluate			STARTE			
		the project			D			
8	Evaluation of the	EAZK continuously collect	10/2019	0	NOT	EAZK		
	project	data to be able to evaluate			STARTE			
		the project			D			

Table 17: Time schedule and cost estimate of preparatory activities in the PA3 - Vsetin.

Table 18 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results.

		2018									2019										2020								
Month	Jan	Feb	Mar	April	May	Jun	July	Aug	Sept	Oct	Nov	Dec	Jan	Feb	Mar	April	May	Jun	July	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	April	May
Project month	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
PA3																													

Table 18: PA3 Vsetin Activities plan.

Explanation:

PA preparations – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

PA implementation – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

PA monitoring/evaluation – Checking whether the expected results are received.

5. Definition of problems in the implementation of PA

Each investment may encounter barriers of a financial, administrative, organizational or substantive nature. Therefore, it is important to define possible problems that may arise when investing in energy efficiency.

Problems (with expected delays): To this day were no problems with implementing the project

6. Conclusions

Energy data and administrative description of the building are valuable and necessary information when developing energy audits and conducting investments aimed at improving energy efficiency. Subsequent implementation of pilot project areas will be based on the presented data and will be described in the next reports (D.T3.1.4, D.T3.2.1 and D.T3.2.2).