

# **DELIVERABLE T3.3.1**

D.T3.3.1 – Pilot actions preparation

06/2018







# **D.T3.3.1: Pilot actions preparation**

## A.T3.3 Preparation and procurement of pilot actions

Issued by: Partner Nr. 05 Date: Jun 2018

| Authors                   |                                                                                |                                                                                                                                                                                                       |  |  |  |
|---------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                           | Name (organization)                                                            | Name, e-mail                                                                                                                                                                                          |  |  |  |
| WP leader                 | Mazovia Energy Agency (MAE), PP5                                               | Aleksandra Luks, <u>a.luks@mae.com.pl</u>                                                                                                                                                             |  |  |  |
| Contributing participants | Regional Energy Agency North (REAN)<br>(PP4)<br>City of Koprivnica (CoK) (PP9) | Boris Kuharić, <u>boris.kuharic@rea-sjever.hr</u> Damir Mandić, <u>damir.mandic@rea-sjever.hr</u> Zvonimir Perko, <u>zvonimir.perko@rea-sjever.hr</u> Maja Balaško, <u>maja.balasko@koprivnica.hr</u> |  |  |  |





#### 1. Introduction and aims

This deliverable is a kind of pre-investment report, which contains all information and data about buildings that allow for a description of the condition of the buildings and the pilot action.

Conducting research and analysis of selected buildings as pilot actions is necessary to ensure the identification of energy-related problem areas. Data collected from building owners given in the chapters below determine the current state of the facilities. It also provides the information needed to specify the energy profile of the buildings. In addition, it defines the measures and actions that were taken to implement the pilot action.

The aim of the document is presentation of plan preparatory activities to investment for the PA. This document describes activities as part of the tasks undertaken for each pilot action.

# PILOT ACTION - PA6. EE with OnePlace platform in a kindergarten of Koprivnica (HR)

## 2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Kindergarten
Owner: City of Koprivnica
Year of construction: 1982

Year of use (if different from year of construction): -

Gross building area [m<sup>2</sup>]: 1 035,46 Building volume [m<sup>3</sup>]: 3 037,00

Building envelope total surface area [m<sup>2</sup>]: 2 481,00

Shape factor (A/V ratio) [m<sup>-1</sup>]: 0,82

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building, increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

| Typology | Inumber | of floors). | 2 - hasement | + ground floor |
|----------|---------|-------------|--------------|----------------|
| IVDUIUEV | ununnei | OI HOULSI.  | z = pasement | T ELOUIIU HOOL |

Number of building users: 200

Location: Ivana Generalica street 4, Koprivnica

Available technical documentation: 

• Yes • No

Technical drawings

Year: 1982

Report on the technical inspection of energy installations

Year: 2007





**Energy audit** 

General, technical review of the building

**Technical drawings** 

Year: 2012 Year: 2017

Year: 2018



Figure 1: PA6. EE with OnePlace platform in a kindergarten of Koprivnica (HR)
Source: internal (mobile phone photos by Damir Mandic)





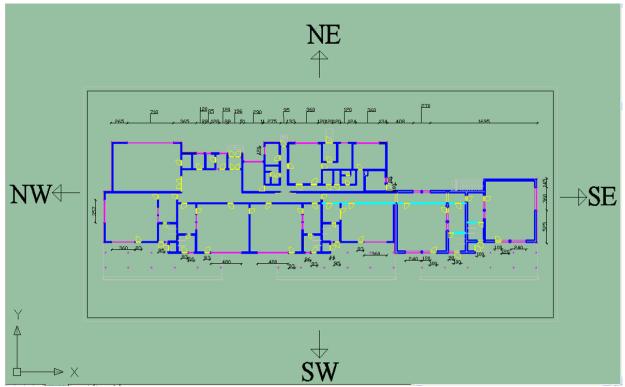



Figure 2: Typology of the building available for the PA6. EE with OnePlace platform in a kindergarten of Koprivnica (HR) (source: City of Koprivnica)

## 3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

#### 3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

#### 3.1.1. External walls

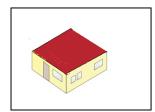
Walls total surface area [m<sup>2</sup>]: 416,00



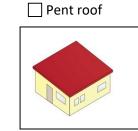


| LIIVE | lope material (d | inerent layers | <u> </u>     |                 | D 6: 11 6                         |  |  |  |
|-------|------------------|----------------|--------------|-----------------|-----------------------------------|--|--|--|
|       |                  |                | Thermal      | Heat transfer   | Defined heat transfer coefficient |  |  |  |
| No.   | Material         | Thickness      | conductivity | coefficient for | for external wall (according to   |  |  |  |
|       |                  | [m]            | [W/mK]       | external wall   | the norm, national regulations)   |  |  |  |
|       |                  |                |              | [W/m²K]         | [W/m²K]¹                          |  |  |  |
|       | WALL 1           |                |              |                 |                                   |  |  |  |
| 1     | Lime- cement     | 0,02           | 1,00         | 0,83            | 0,30                              |  |  |  |
|       | plaster          |                |              |                 |                                   |  |  |  |
| 2     | Brick block      | 0,25           | 0,420        |                 |                                   |  |  |  |
| 3     | Thermo           | 0,05           | 0,111        |                 |                                   |  |  |  |
|       | plaster          |                |              |                 |                                   |  |  |  |
|       |                  | 1              |              | ALL 2           |                                   |  |  |  |
| 1     | Lime- cement     | 0,02           | 1,00         | 0,74            | 0,30                              |  |  |  |
|       | plaster          |                |              |                 |                                   |  |  |  |
| 2     | Brick block      | 0,25           | 0,420        |                 |                                   |  |  |  |
| 3     | Thermo           | 0,05           | 0,111        |                 |                                   |  |  |  |
|       | plaster          |                |              |                 |                                   |  |  |  |
| 4     | Façade brick     | 0,12           | 0,830        |                 |                                   |  |  |  |
|       |                  |                | W            | ALL 3           |                                   |  |  |  |
| 1     | Gypsum           | 0,012          | 0,250        | 0,35            | 0,30                              |  |  |  |
|       | cardboard        |                |              |                 |                                   |  |  |  |
| 2     | OSB board        | 0,01           | 0,130        |                 |                                   |  |  |  |
| 3     | PE foil          | 0,002          | 0,600        |                 |                                   |  |  |  |
| 4     | Rock wool        | 0,08           | 0,035        |                 |                                   |  |  |  |
| 5     | OSB board        | 0,01           | 0,130        |                 |                                   |  |  |  |
| 6     | EPS              | 0,02           | 0,037        |                 |                                   |  |  |  |
| 7     | Acrylic plaster  | 0,003          | 0,900        |                 |                                   |  |  |  |
|       |                  | -              |              | ALL 4           |                                   |  |  |  |
| 1     | Gypsum           | 0,012          | 0,250        | 0,33            | 0,30                              |  |  |  |
|       | cardboard        |                |              | •               | ,                                 |  |  |  |
| 2     | OSB board        | 0,01           | 0,130        |                 |                                   |  |  |  |
| 3     | PE foil          | 0,002          | 0,600        |                 |                                   |  |  |  |
| 4     | Rock wool        | 0,08           | 0,035        |                 |                                   |  |  |  |
| 5     | OSB board        | 0,01           | 0,130        |                 |                                   |  |  |  |
| 6     | EPS              | 0,02           | 0,037        |                 |                                   |  |  |  |
| 7     | Acrylic plaster  | 0,003          | 0,900        |                 |                                   |  |  |  |
| 8     | Façade brick     | 0,12           | 0,830        |                 |                                   |  |  |  |
|       | . agade brick    | 0,12           | 0,000        |                 | l                                 |  |  |  |

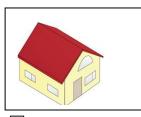
<sup>&</sup>lt;sup>1</sup> If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)





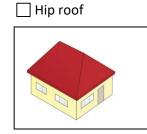


#### 3.1.2. Roof

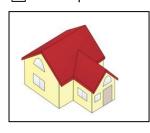
## Type of roof:

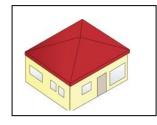

☐ Flat roof

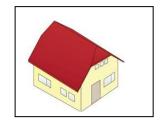


☐ Multi-hip roof





☐ Tented roof





☐ Gable roof

☐ Half-hipped roof









**Roof slope** [°]: 17 in direction: S **Roof total surface area** [m²]: 949,00 **Envelope material** (different layers):

| No. | Material  | Thickness<br>[m] | Thermal<br>conductivity<br>[W/mK] | Heat transfer coefficient for roof [W/m²K] | Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m²K] |
|-----|-----------|------------------|-----------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1   | Wooden    | 0,025            | 0,130                             | Not part of the                            | 0,25                                                                                             |
|     | board     |                  |                                   | heating zone                               |                                                                                                  |
| 2   | Roof foil | 0,002            | 0,200                             |                                            |                                                                                                  |
| 3   | Roof tile | 0,03             | 1,00                              |                                            |                                                                                                  |

#### 3.1.3. Ground floor

Floor total surface area [m<sup>2</sup>]: 949,00 Envelope material (different layers):

| No. | Material     | Thickness<br>[m] | Thermal conductivity [W/mK] | Heat transfer coefficient for floor [W/m²K] | Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m²K] |
|-----|--------------|------------------|-----------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1   | Wooden floor | 0,02             | 0,130                       | 1,23                                        | 0,40                                                                                              |
| 2   | Cement       | 0,04             | 1,60                        |                                             |                                                                                                   |
|     | glazing      |                  |                             |                                             |                                                                                                   |
| 3   | PVC foil     | 0,002            | 0,200                       |                                             |                                                                                                   |
| 4   | EPS          | 0,04             | 0,037                       |                                             |                                                                                                   |
| 5   | PVC foil     | 0,002            | 0,200                       |                                             |                                                                                                   |
| 6   | Hydro        | 0,01             | 0,230                       |                                             |                                                                                                   |
|     | insulation   |                  |                             |                                             |                                                                                                   |
| 7   | Reinforced   | 0,15             | 2,60                        |                                             |                                                                                                   |





| concrete slab |  |  |
|---------------|--|--|

## 3.1.4. Basement ceiling (if the building has a basement)

**Total surface area** [m<sup>2</sup>]: 83,83 m<sup>2</sup> **Envelope material** (different layers):

| No. | Material       | Thickness<br>[m] | Thermal conductivity [W/mK] | Heat transfer<br>coefficient for<br>floor [W/m²K] | Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m²K] |
|-----|----------------|------------------|-----------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
| 1   | Wooden floor   | 0,02             | 0,130                       | 1,23                                              | 0,40                                                                                              |
| 2   | Cement glazing | 0,04             | 1,60                        |                                                   |                                                                                                   |
| 3   | PVC foil       | 0,002            | 0,200                       |                                                   |                                                                                                   |
| 4   | EPS            | 0,04             | 0,037                       |                                                   |                                                                                                   |
| 5   | PVC foil       | 0,002            | 0,200                       |                                                   |                                                                                                   |
| 6   | FERT strop     | 0,2              | 3,02                        |                                                   |                                                                                                   |
| 7   | Lime- cement   | 0,02             | 1,00                        |                                                   |                                                                                                   |
|     | plaster        |                  |                             |                                                   |                                                                                                   |

| Ba | se | m | е | n | t |
|----|----|---|---|---|---|
|----|----|---|---|---|---|

| Is the basement heated?             | Yes Yes      | ⊠ No  |
|-------------------------------------|--------------|-------|
| Basement walls total surface        | e area [m²]: | 81,12 |
| <b>Envelope material</b> (different | : layers):   |       |

| No. | Material    | Thickness<br>[m] | Thermal conductivity [W/mK] | Heat transfer<br>coefficient for<br>external wall<br>[W/m²K] | Defined heat transfer coefficient for external wall (according to the norm, national regulations)  [W/m²K] |
|-----|-------------|------------------|-----------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 1   | Brick block | 0,30             | 0,420                       | 1,26                                                         | 0,30                                                                                                       |

#### **3.1.5.** Windows

| Type:                                                                                                    |
|----------------------------------------------------------------------------------------------------------|
| ⊠ single window, single glazed                                                                           |
| combined window, double glazed                                                                           |
| combined window, three panes                                                                             |
| single-frame window, double low-emission glass, argon chamber                                            |
| single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner |
| glass of low-emission glass, the chambers between the glasses are filled with argon                      |
| single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers         |
| between the glasses are filled with argon                                                                |
| other (what ?)single window with 2xsingle glaze                                                          |
|                                                                                                          |
| Shading (sun protection):                                                                                |
| curtains                                                                                                 |
|                                                                                                          |
| wooden shutters                                                                                          |
| internal blinds                                                                                          |





| CENTRAL EUROPE | European Unio<br>European Region<br>Development Fur |
|----------------|-----------------------------------------------------|
| BOOSTEE-CE     |                                                     |

| awnings other (what ?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material (PVC, wood, aluminum, wood-aluminum): Wood Number of windows: 58 Windows total surface area [m²]: 118,40 Diffusers in windows (YES or NO): NO Heat transfer coefficient [W/m²K]: 3,6 Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.1.6. Doors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Material (wood, aluminum, PVC etc.): Wood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Number of doors: 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Doors total surface area [m <sup>2</sup> ]: 51,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Heat transfer coefficient [W/m²K]: 3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Defined heat transfer coefficient</b> (according to the norm, national regulations) [W/m²K]: 2,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3.2. Systems energy data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions Energy parameters characterizing the building:  Total non renewable primary energy demand [kWh/year]: no data  Energy consumption (heating) [kWh/year]: 107 904,00  Efficiency of the heating system [%]: no data  Energy consumption (hot water preparation) [kWh/year]: no data  Efficiency of the hot water preparation system [%]: no data  Energy consumption (cooling) [GJ/year or kWh/year]: no cooling system  Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler cogeneration, RES etc.): gas boiler  Regulation and control of systems in the building:    thermostatic valves |
| Annual fuel consumption [kg or m³ or kWh or GJ]: 18 376,00 m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Electricity consumption [kWh/year]: 43 066,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ordered power [MW]: no data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Lighting type</b> (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| lamps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Power of light bulbs [W]: 7 710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Number of lighting points: 208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ventilation type (according to the table 1): natural ventilation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |





| Ventilation type     | Short description                                                                    |  |  |  |
|----------------------|--------------------------------------------------------------------------------------|--|--|--|
| Natural ventilation  | based on natural processes occurring in the environment (using gravity)              |  |  |  |
| Mechanical           | air exchange is due to the operation of an electric motor driven ventilator. Using   |  |  |  |
| (forced) ventilation | the mechanism gives us the ability to control the system                             |  |  |  |
| Mechanical           | operates on the principle of mechanical ventilation extended by a recuperator        |  |  |  |
| ventilation with     | responsible for the recovery of heat from exhaust air from the building              |  |  |  |
| heat recovery        |                                                                                      |  |  |  |
| Hybrid ventilation   | combination of natural and mechanical ventilation. This system works alternately     |  |  |  |
|                      | depending on atmospheric conditions, using natural forces due to the difference in   |  |  |  |
|                      | temperature and external air movement (wind) and the mechanics of the fan in         |  |  |  |
|                      | the ventilation duct improving the ventilation conditions in case of need            |  |  |  |
| Mixing (blasting)    | based on mixing the contaminated air in the building with clean air and expelling it |  |  |  |
| ventilation          | out. Fresh air flows through the air diffuser system                                 |  |  |  |
| Displacement         | based on the separation of the two zones (the lower zone to about 1.1 m (sitting     |  |  |  |
| ventilation          | position) or the 1.8 m (standing position) and the upper part) in which the          |  |  |  |
|                      | different characteristics of the air will be felt                                    |  |  |  |

Table 1: Description of type ventilation.

#### **Building energy profile**

The energy consumption in construction is distinguished by three types of energy - primary energy (EP), final energy (EK) and utility energy (EU). Primary energy refers to the energy contained in sources, including fuels and carriers, necessary to cover the final energy demand, taking into account the efficiency of the entire chain of acquisition, conversion and transport to the end user. A concept that is important from the point of view of a sustainable development strategy. The ratio of non-renewable primary energy inputs to the generation and delivery of an energy or energy carrier for technical systems is the difference between primary energy and final energy. The final energy is heat and auxiliary energy, which must be delivered to the boundary of the heating system (building) with a given efficiency in order to cover the energy demand for heating and ventilation of rooms. A concept that is important from the point of view of the building's user who incurs costs related to the operation of the building. The efficiency of the system is a conversion of final energy into utility energy. The utility energy concerns energy for heating and ventilation as well as for preparing domestic hot water, regardless of the type and efficiency of the heating device. A concept that is important from the designer's point of view, characterizing thermal insulation and building tightness. The concepts are presented below.

$$EU \xrightarrow{\eta} EK \xrightarrow{w_i} EP$$

Annual demand for non renewable primary energy EP [kWh/m²/year]

|   | Non            | Non            | Non renewable  | Non renewable  | Non renewable  | Sum         |
|---|----------------|----------------|----------------|----------------|----------------|-------------|
|   | renewable      | renewable      | primary energy | primary energy | primary energy | (1+2+3+4+5) |
|   | primary energy | primary energy | demand for     | demand for     | demand for     |             |
|   | demand for     | demand for     | ventilation    | preparation of | electricity    |             |
|   | heating        | cooling        |                | hot water      |                |             |
| Ī | 1              | 2              | 3              | 4              | 5              | 6           |
|   | No data        | -              | -              | No data        | No data        | No data     |





#### Annual final energy demand EK [kWh/m²/year]

| Final energy<br>demand for<br>heating | Final energy<br>demand for<br>cooling | Final energy<br>demand for<br>ventilation | Final energy<br>demand for<br>preparation of hot<br>water | Final energy<br>demand for<br>electricity | Sum<br>(1+2+3+4+5) |
|---------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------|
| 1                                     | 2                                     | 3                                         | 4                                                         | 5                                         | 6                  |
| No data                               | _                                     | _                                         | No data                                                   | No data                                   | No data            |

#### Annual utility energy demand EU [kWh/m²/year]

| Utility energy demand for heating | Utility energy<br>demand for<br>cooling | Utility energy<br>demand for<br>ventilation | Utility energy<br>demand for<br>preparation of hot<br>water | Utility energy<br>demand for<br>electricity | Sum<br>(1+2+3+4) |
|-----------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------|------------------|
| 1                                 | 2                                       | 3                                           | 4                                                           | 5                                           | 6                |
| No data                           |                                         | _                                           | No data                                                     |                                             | No data          |

#### Energy class of the building (according to the table 2): D average energy-intensive building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

| <b>Energy class</b>               | Energy assessment                 | EU indicator [kWh/m²/year] |
|-----------------------------------|-----------------------------------|----------------------------|
| A++                               | zero-energy building              | ≤ 10                       |
| A+                                | passive building                  | up to 15                   |
| Α                                 | low-energy building               | from 15 to 45              |
| В                                 | energy-saving building            | from 45 to 80              |
| С                                 | average energy efficient building | from 80 to 100             |
| D average energy-intensive buildi |                                   | from 100 to 150            |
| E energy-consuming building       |                                   | from 150 to 250            |
| F                                 | high-energy consuming building    | over 250                   |

Table 2: Building energy class (source: Association for Sustainable Development).

#### **Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]**

Fixed fee [per MW-month]: no fee Variable fee [per kWh]: 1,56 HRK Subscription [per month]: 51,63 HRK

#### Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: no fee Variable fee [per GJ]: 63,06 HRK Subscription [per month]: 50,00 HRK

#### Summary and evaluation of the energy building status

The overall condition of the building is poor. The external partitions such as external walls, floor, windows and doors do not meet the technical requirements in terms of the value of heat transfer coefficient.





The building's energy system includes only the heating system, the hot water preparation system and the power system. The building uses annually 150 970 kWh, 71% of which is for heating. The energy class classifies it as an average energy-intensive building.

The building is not equipped with cooling systems and ventilation is done through windows and ventilation ducts.

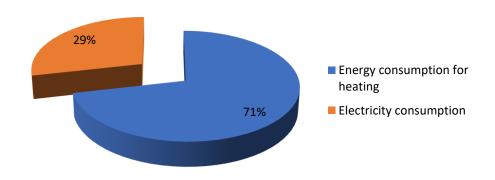



Figure 3: Energy consumption balance of the building for the PA6. EE with OnePlace platform in a kindergarten of Koprivnica (HR).

# PILOT ACTION - PA6. EE with OnePlace platform in a Primary school Braca Radic in Koprivnica (HR)

## 2. Description of the PA building(s)

The description of the building provides basic building and administrative information. It allows to determine the location and the prevailing geographical conditions, the surroundings of the building. In addition, construction data is an example for similar construction solutions.

Type of building: Primary school Owner: City of Koprivnica
Year of construction: 1989

Year of use (if different from year of construction): -

**Gross building area** [m<sup>2</sup>]: 6 681,31 **Building volume** [m<sup>3</sup>]: 15 540,00

**Building envelope total surface area** [m<sup>2</sup>]: 7 955,69

Shape factor (A/V ratio) [m<sup>-1</sup>]: 0,51

The shape factor A/V is the ratio of the total surface area of all external walls (including windows and doors), roofs, floors on the ground or ceilings over the unheated basement, ceilings above the crossings, separating the heated part of the building from outside air to the volume of the heated part of the building,





increased by the volume of heated rooms in the utility attic or in the basement and reduced by the volume of separate staircases, elevator shafts, open recesses, loggias and galleries.

It is best if the building shape factor is as low as possible. This means that the building should be as compact as possible, similar in shape to a sphere or cube, that is, solids characterized by the lowest A/V ratio. Considering energy consumption, a building with a high A/V ratio "consumes" more energy.

**Typology (number of floors)**: 3 – ground floor + first floor + attic

Number of building users: 894

Location: Miklinovec 6a street, Koprivnica

Available technical documentation:

Building project for thermo-modernization of the building Year: 2015

Energy audit Year: 2016

Building project for thermo-modernization of the building Year: 2016



Figure 4: PA6. EE with OnePlace platform in a Primary school in Koprivnica (HR)
Source: https://epodravina.hr/ (local news portal)





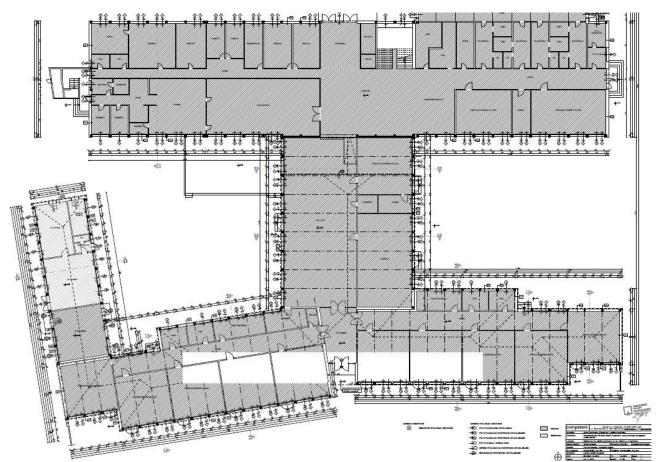



Figure 5: Typology of the building available for the PA6. EE with OnePlace platform in a Primary school in Koprivnica (HR) ) (source: City of Koprivnica)

## 3. Energy PA building(s) profile

Collecting energy data allows to determine the energy profile of the building. It provides information on the insulation of external partitions and the condition of energy systems (heating/cooling, ventilation, electricity, hot water preparation) in buildings.

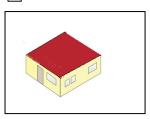
#### 3.1. External partitions

The technical and construction status of the building envelope influences significantly the heat loss to the environment. The used construction and thermal insulation material is important. In order to improve standards, a norm, regulation is established for each partition in each country. For existing buildings in the case of low insulation, it is recommended to carry out thermo-modernization.

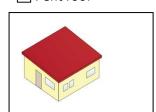
#### 3.1.1. External walls

Walls total surface area [m<sup>2</sup>]: 416,00 m<sup>2</sup>

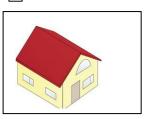




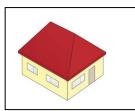

| No. | Material                | Thickness<br>[m] | Thermal<br>conductivity<br>[W/mK] | Heat transfer<br>coefficient for<br>external wall<br>[W/m²K] | Defined heat transfer coefficient for external wall (according to the norm, national regulations)  [W/m²K]² |
|-----|-------------------------|------------------|-----------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|     |                         |                  | WAI                               | .L 1                                                         |                                                                                                             |
| 1   | Lime- cement<br>plaster | 0,02             | 1,00                              | 1,24                                                         | 0,30                                                                                                        |
| 2   | Brick block             | 0,29             | 0,420                             |                                                              |                                                                                                             |
| 3   | Thermo<br>plaster       | 0,05             | 0,111                             |                                                              |                                                                                                             |
|     |                         |                  | WAL                               | .L 2                                                         |                                                                                                             |
| 1   | Lime- cement plaster    | 0,02             | 1,00                              | 0,66                                                         | 0,30                                                                                                        |
| 2   | Reinforced concrete     | 0,30             | 2,60                              |                                                              |                                                                                                             |
| 3   | EPS                     | 0,05             | 0,037                             |                                                              |                                                                                                             |
| 4   | Silicate plaster        | 0,002            | 0,900                             |                                                              |                                                                                                             |


#### 3.1.2. Roof

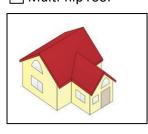
## Type of roof:


☐ Flat roof



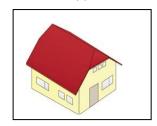

☐ Pent roof




☐ Gable roof



Hip roof




☐ Multi-hip roof



☐ Tented roof







**Roof slope** [°]: 20 in direction: S **Roof total surface area** [m²]: 3 235,00

<sup>&</sup>lt;sup>2</sup> If there are more U coefficients than one in your country, exchange all of them with the division, what they mean (e.g. recommended, required etc.)





| No. | Material        | Thickness<br>[m] | Thermal<br>conductivity<br>[W/mK] | Heat transfer<br>coefficient for<br>roof [W/m²K] | Defined heat transfer coefficient for roof (according to the norm, national regulations) [W/m²K] |
|-----|-----------------|------------------|-----------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1   | Wooden<br>board | 0,024            | 0,130                             | 0,48                                             | 0,25                                                                                             |
| 2   | Mineral<br>wool | 0,05             | 0,037                             |                                                  |                                                                                                  |
| 3   | Air pocket      | 0,07             | -                                 |                                                  |                                                                                                  |
| 4   | Wooden<br>board | 0,024            | 0,130                             |                                                  |                                                                                                  |
| 5   | Air pocket      | 0,08             | -                                 |                                                  |                                                                                                  |
| 6   | Roof tile       | 0,03             | 1,00                              |                                                  |                                                                                                  |

#### 3.1.3. Ground floor

Floor total surface area [m<sup>2</sup>]: 2 837,90 Envelope material (different layers):

|     | Livelope material (different layers). |                  |                                   |                                                   |                                                                                                   |  |  |  |  |  |
|-----|---------------------------------------|------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| No. | Material                              | Thickness<br>[m] | Thermal<br>conductivity<br>[W/mK] | Heat transfer<br>coefficient for<br>floor [W/m²K] | Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m²K] |  |  |  |  |  |
| 1   | Wooden floor                          | 0,02             | 0,130                             | 0,68                                              | 0,40                                                                                              |  |  |  |  |  |
| 2   | Cement<br>glazing                     | 0,02             | 1,60                              |                                                   |                                                                                                   |  |  |  |  |  |
| 3   | Reinforced concrete slab              | 0,10             | 2,60                              |                                                   |                                                                                                   |  |  |  |  |  |
| 4   | EPS                                   | 0,05             | 0,042                             |                                                   |                                                                                                   |  |  |  |  |  |
| 5   | PVC foil                              | 0,002            | 0,200                             |                                                   |                                                                                                   |  |  |  |  |  |
| 6   | Hydro<br>insulation                   | 0,01             | 0,230                             |                                                   |                                                                                                   |  |  |  |  |  |
| 7   | Reinforced concrete slab              | 0,10             | 2,60                              |                                                   |                                                                                                   |  |  |  |  |  |

## 3.1.4. Basement ceiling (if the building has a basement) – there's no basement

**Total surface area** [m<sup>2</sup>]:

**Envelope material** (different layers):

|   | No. | Material | Thickness<br>[m] | Thermal<br>conductivity<br>[W/mK] | Heat transfer<br>coefficient for<br>floor [W/m²K] | Defined heat transfer coefficient for floor (according to the norm, national regulations) [W/m²K] |
|---|-----|----------|------------------|-----------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Ī | 1   |          |                  |                                   |                                                   |                                                                                                   |

| <b>Basement</b> | there is no base   | <u>ment)</u> |      |
|-----------------|--------------------|--------------|------|
| Is the base     | ment heated?       | Yes          | ☐ No |
| Basement v      | walls total surfac | e area [m²]: |      |





| No. | Material | Thickness<br>[m] | Thermal conductivity [W/mK] | Heat transfer<br>coefficient for<br>external wall<br>[W/m²K] | Defined heat transfer coefficient for external wall (according to the norm, national regulations) [W/m²K] |
|-----|----------|------------------|-----------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 1   |          |                  |                             |                                                              |                                                                                                           |

#### **3.1.5.** Windows

| Type:                                                                                                    |
|----------------------------------------------------------------------------------------------------------|
| single window, single glazed                                                                             |
| combined window, double glazed                                                                           |
| combined window, three panes                                                                             |
| single-frame window, double low-emission glass, argon chamber                                            |
| single-frame window, three glass panes, two (external) glasses are made of ordinary glass, and the inner |
| glass of low-emission glass, the chambers between the glasses are filled with argon                      |
| single-frame window, three glass panes, all glasses are made of low-emission glass, the chambers         |
| between the glasses are filled with argon                                                                |
| other (what ?)                                                                                           |
|                                                                                                          |
| Shading (sun protection): no shading                                                                     |
| curtains                                                                                                 |
| roller shutters                                                                                          |
| wooden shutters                                                                                          |
| internal blinds                                                                                          |
| awnings                                                                                                  |
| other (what ?)                                                                                           |
| Material (PVC, wood, aluminum, wood-aluminum): PVC                                                       |
| Number of windows: 284                                                                                   |
| Windows total surface area [m <sup>2</sup> ]: 714,39                                                     |
| Diffusers in windows (YES or NO): NO                                                                     |
| Heat transfer coefficient [W/m <sup>2</sup> K]: 1,4/1,1                                                  |
| <b>Defined heat transfer coefficient</b> (according to the norm, national regulations) [W/m²K]: 1,6      |
| Thermo-modernization (if carried out)                                                                    |
| Year: 2013/2015                                                                                          |
| Type of windows: single-frame window, double low-emission glass/ three glass panes, argon chamber        |
| Material: PVC                                                                                            |
| Number of windows (if all windows are not replaced on the new ones): 284                                 |
| Windows total surface area [m²]: 714,39                                                                  |
| Diffusers in windows (YES or NO): NO                                                                     |
| Heat transfer coefficient [W/m²K]: 1,4/1,1                                                               |
| Heat transfer coefficient [vv/III N]. 1,4/1,1                                                            |

## 3.1.6. **Doors**

Material (wood, aluminum, PVC etc.): PVC





Number of doors: 16

Doors total surface area [m<sup>2</sup>]: 73,38 Heat transfer coefficient [W/m<sup>2</sup>K]:1,1/1,4

Defined heat transfer coefficient (according to the norm, national regulations) [W/m²K]: 2,0

**Thermo-modernization** (if carried out)

Year: 2015 Material: PVC

Number of doors (if all doors are not replaced on the new ones): 16

Doors total surface area [m<sup>2</sup>]: 73,38 Heat transfer coefficient [W/m<sup>2</sup>K]: 1,1/1,4

#### Systems energy data 3.2.

High efficiency of energy systems and the type of energy source determines its consumption. Also important is the issue of installed control and control systems that help ensure optimal thermal conditions. Energy parameters characterizing the building:

Total non renewable primary energy demand [kWh/year]: no data

Energy consumption (heating) [kWh/year]: 214 527,60

Efficiency of the heating system [%]: no data

**Energy consumption (hot water preparation)** [kWh/year]: no data

Efficiency of the hot water preparation system [%]: no data

| Energy consumption (cooling) [kWh/year]: 88 588,48                                                       |
|----------------------------------------------------------------------------------------------------------|
| Type of energy source (gas boiler, coal boiler, electricity, municipal heating network, biomass boiler,  |
| cogeneration, RES etc.): gas boiler                                                                      |
| Regulation and control of systems in the building:                                                       |
| thermostatic valves                                                                                      |
| heat dividers                                                                                            |
| motion sensors                                                                                           |
| electricity meters                                                                                       |
| water meters                                                                                             |
| other (what ?)                                                                                           |
| <b>Annual fuel consumption</b> [kg or m³ or kWh or GJ]: 29 457,96 m³                                     |
| Electricity consumption [kWh/year]: 135 721,00                                                           |
| Ordered power [MW]: no data                                                                              |
| Lighting type (traditional incandescent lamps; halogen bulbs; fluorescent lamps; LED lamps): fluorescent |
| lamps                                                                                                    |
| Power of light bulbs [W]: 35 020                                                                         |
| Number of lighting points: 517                                                                           |

Ventilation type (according to the table 1): natural ventilation





#### **Building energy profile**

Annual demand for non renewable primary energy EP [kWh/m²/year]

| Non<br>renewable<br>primary energy<br>demand for<br>heating | Non renewable primary energy demand for cooling | Non renewable primary energy demand for ventilation | Non renewable primary energy demand for preparation of hot water | Non renewable primary energy demand for electricity | Sum<br>(1+2+3+4+5) |
|-------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|--------------------|
| 1                                                           | 2                                               | 3                                                   | 4                                                                | 5                                                   | 6                  |
| No data                                                     | No data                                         | -                                                   | No data                                                          | No data                                             | No data            |

Annual final energy demand EK [kWh/m²/year]

| Final energy<br>demand for<br>heating | Final energy<br>demand for<br>cooling | Final energy<br>demand for<br>ventilation | Final energy<br>demand for<br>preparation of hot<br>water | Final energy<br>demand for<br>electricity | Sum<br>(1+2+3+4+5) |
|---------------------------------------|---------------------------------------|-------------------------------------------|-----------------------------------------------------------|-------------------------------------------|--------------------|
| 1                                     | 2                                     | 3                                         | 4                                                         | 5                                         | 6                  |
| No data                               | No data                               | -                                         | No data                                                   | No data                                   | No data            |

Annual utility energy demand EU [kWh/m²/year]

| Utility energy demand for heating | Utility energy<br>demand for<br>cooling | Utility energy<br>demand for<br>ventilation | Utility energy<br>demand for<br>preparation of hot<br>water | Utility energy<br>demand for<br>electricity | Sum<br>(1+2+3+4) |
|-----------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------|------------------|
| 1                                 | 2                                       | 3                                           | 4                                                           | 5                                           | 6                |
| No data                           | No data                                 | -                                           | No data                                                     |                                             | No data          |

#### Energy class of the building (according to the table 2): C average energy efficient building

The EU indicator is a building quality indicator. In general, the smaller the EU, the less energy we lose through the outer baffles of the building. It refers to the energy which is consumed and goes from the building's heating system to the individual rooms, and the heat loss (through penetration and ventilation) to the environment. The EU indicator value in the table below includes only heating/cooling.

#### Electricity price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: no fee Variable fee [per kWh]: 1,56 HRK Subscription [per month]: 51,63 HRK

#### Energy (heating) price [in your own currency: CZK or EUR or HRK or HUF or PLN]

Fixed fee [per MW-month]: no fee Variable fee [per GJ]: 63,06 HRK Subscription [per month]: 50,00 HRK

#### Summary and evaluation of the energy building status

The general condition of the building is bad. Some external partitions such as external walls, roof, floor do not meet the technical requirements in terms of the value of heat transfer coefficient. The building is after thermo-modernization in 2013 and 2015 involving the replacement of window and door joinery. The modernization caused that windows and doors are characterized by low heat transfer coefficient consistent with the legal regulations.





The building's energy system includes the heating system, the hot water preparation system, the cooling system and the power system. In total, the building uses annually 438 837,08 kWh, 49% of which is for heating and hot water despite installed thermostatic valves. However, considering the large area and volume of the building, the energy class classifies it as an average energy efficient building. The ventilation is done through windows and ventilation ducts.

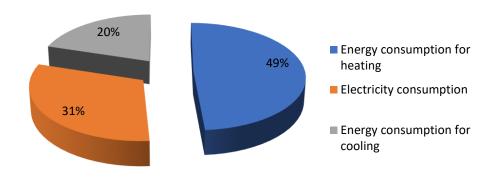



Figure 6: Energy consumption balance of the building for the PA6. EE with OnePlace platform in a Primary school in Koprivnica (HR)

## 4. Definition of the required resources to run the investment

This chapter describes the measures and activities that were implemented to start the investment in the appropriate order and assign a time schedule and costs. These are only preparatory activities to undertake investment.

The steps that were taken in order to prepare an investment or to carry out other activities are presented in the appropriate order.

|     |                                                          | PA6                                                                   |                  |               |                    |                                |
|-----|----------------------------------------------------------|-----------------------------------------------------------------------|------------------|---------------|--------------------|--------------------------------|
| No. | Preparatory work                                         | Preparatory work description                                          | Time<br>schedule | Cost<br>(EUR) | Market<br>research | Selected<br>external<br>expert |
| 1   | Meetings with management people in the selected building | Investment description<br>and finalizing the needs<br>of the building | February<br>2018 | 1             | DONE               | 1                              |
| 2   | Data collection                                          | Existing condition review and conversation with the user              | February<br>2018 | -             | DONE               | -                              |
| 3   | Defining the smart<br>metering system<br>possibilities   | Research and comparison of the various smart metering systems         | March 2018       | -             | DONE               | -                              |
| 4   | Linking needs with the                                   | Searching for the cost                                                | April 2018       | -             | DONE               | -                              |





|   |                           | ı                        |           |   | T        | ı |
|---|---------------------------|--------------------------|-----------|---|----------|---|
|   | possibilities considering | optimal solution and     |           |   |          |   |
|   | financial frame           | calculations             |           |   |          |   |
| 5 | Definition of the         | Description of the       | April/May | - | DONE     | - |
|   | procurement subject       | procurement subject with | 2018      |   |          |   |
|   | and final preparation for | detailed technical data  |           |   |          |   |
|   | the public procurement    | and making final         |           |   |          |   |
|   |                           | adjustments for the      |           |   |          |   |
|   |                           | public procurement       |           |   |          |   |
| 6 | Public procurement        | Administrative and legal | May 2018  | - | IN       | - |
|   | procedures to engage      | work regarding public    |           |   | PROGRESS |   |
|   | contractor and selection  | procurement and          |           |   |          |   |
|   | of the contractor         | selection of the         |           |   |          |   |
|   | (equipment included)      | contractor               |           |   |          |   |

Table 3: Time schedule and cost estimate of preparatory activities in the PA6. EE with OnePlace platform in a kindergarten of Koprivnica and Primary School Braca Radic (HR).

Table 4 shows the time periods for the investment preparation period, implementation of activities and subsequent monitoring and evaluation of results. All works must take place before August 2019.

|                  |     | 2018 |     |       |     |     |      |     |      |     |     |     | 2019 |     |     |       |     |     |      |     |     |     |     | 2020 |     |     |     |       |     |
|------------------|-----|------|-----|-------|-----|-----|------|-----|------|-----|-----|-----|------|-----|-----|-------|-----|-----|------|-----|-----|-----|-----|------|-----|-----|-----|-------|-----|
| Month            | Jan | Feb  | Mar | April | May | Jun | July | Aug | Sept | Oct | Nov | Dec | Jan  | Feb | Mar | April | May | Jun | July | Aug | Sep | Oct | Nov | Dec  | Jan | Feb | Mar | April | May |
| Project<br>month | 8   | 9    | 10  | 11    | 12  | 13  | 14   | 15  | 16   | 17  | 18  | 19  | 20   | 21  | 22  | 23    | 24  | 25  | 26   | 27  | 28  | 29  | 30  | 31   | 32  | 33  | 34  | 35    | 36  |
| PA6              |     |      |     |       |     |     |      |     |      |     |     |     |      |     |     |       |     |     |      |     |     |     |     |      |     |     |     |       |     |

Table 4: PA6 Activities plan.

| start<br>WPT3 | of | PA preparations | PA implementation | PA monitoring/evaluation |   | end<br>PA | of | end<br>WPT3 | of |
|---------------|----|-----------------|-------------------|--------------------------|---|-----------|----|-------------|----|
|               |    |                 |                   |                          | _ |           |    |             |    |

#### **Explanation:**

**PA preparations** – A set of activities that are used to initiate the right investment, such as the selection of experts, contractors, collecting data and information, and other administrative work.

**PA implementation** – A set of activities like installation of equipment, systems, implementation of the OnePlace platform, promotional activities.

**PA monitoring/evaluation** – Checking whether the expected results are received.





## 5. Definition of problems in the implementation of PA

Each investment may encounter barriers of a financial, administrative, organizational or substantive nature. Therefore, it is important to define possible problems that may arise when investing in energy efficiency.

Problems (with expected delays): No problems so far

#### 6. Conclusions

Energy data and administrative description of the building are valuable and necessary information when developing energy audits and conducting investments aimed at improving energy efficiency. Subsequent implementation of pilot project areas will be based on the presented data and will be described in the next reports (D.T3.1.7, D.T3.2.1 and D.T3.2.2).