

TT5: QM system basics and extension Webinar, 23. 11. 2021

CONTENT

QM Heizwerke

What is it and why QM / achievements

QM process basics Documents / tools / project types

QM HEIZWERKE - WHAT IS IT?

- Quality management program for biomass district heating plants (in Austria)
 - Improve the quality and efficiency of biomass district heating plants and networks
 - Professional planning and execution
 - Reliable operation with low maintenance efforts
 - Low emissions in all operating conditions
 - Sustainable long term operation
- Funding only for high quality plants
- Optimisation of existing plants
- Know-How-Transfer

Federal Ministry Republic of Austria Climate Action, Environment, Energy, Mobility, Innovation and Technology

Biomass DH Plants

www.qm-biomass-dh-plants.com

WHERE DOES IT COME FROM?

Holzheizwerke

- Made in Switzerland
 - invented 1998
 - Since 2005 development supported by Austria, Germany

www.qmholzheizwerke.ch

New member from Italy

WORKING GROUP Quality Assurance Wood Combustion

Switzerland:

 Holzenergie Schweiz, with financial subsidy of the Federal Authority for Energy

Germany:

- College for Forestry in Rottenburg
- --- C.A.R.M.E.N. (Centrales Agrar-Rohstoff-Marketingund Entwicklungs-Netzwerk e.V.)

Austria:

 --- AEE - Institute for Sustainable Technologies (AEE INTEC)

WHY QUALITY MANAGEMENT?

- Long-term infrastructure projects with high investments
- Planning significantly influence project success
 - Dimensioning of plant and network
 - Efficiency / fuel demand
 - Plant durability and operating costs
 - Development of supply area
- Avoid stranded investments
 - Ensure effective public funding

JÜRGEN GOOD

Engineering office Verenum, head of the Quality Assurance Wood Combustion:

"Biomass heating plants with heating networks are long-term projects with high investment needs. Thus, a professional project and quality management is essential in order to realize and operate plants successfully."

- Consequent monitoring and optimization
 - Technical, economical and administrative
- Don't make the same mistakes again and again
 - Use proofed technology and concepts
 - Ensure state of the art / state of knowledge

COST RELEVANT PROCESSES

Concept & planning	Detailed engineering	Procurement
70%	20%	10%

Source: B. Enzensberger (Q-manager & planner in AT)

Correcting planning mistakes is

- difficult (sometimes impossible)
- expensive

GENERAL CLAIMS

- Biomass DH must become better and cheaper
 - cheap planning? low investments? low operation costs?
 - Low HEAT GENERATION COSTS
- Apply systems that improves quality (continuously)
- Professional conception, planning and implementation
 - Know-how, experience, "second opinion",...
- Financial support only for high-quality systems
 - Subsidies must be sustainable in the long term
 - Subsidies require justification

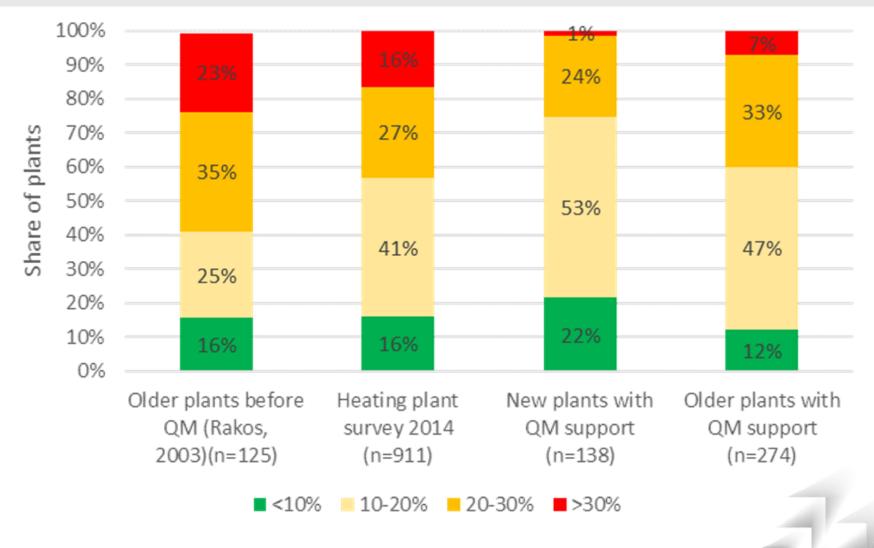
QUALITY OBJECTIVES

- Reliable, low-maintenance operation
- High utilization ratios and low distribution losses
- Low emissions in all operating conditions
- Precise and stable control systems
- Ecological and economic sustainability
 - For the whole lifetime
 - QM helps by defining and checking the quality of planning and project

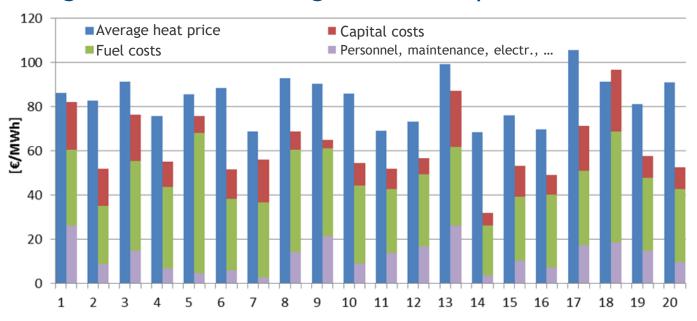
ADDITIONAL OBJECTIVES

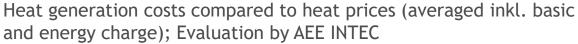
- Independent consultation to...
 - plant owner, investor
 - planner
- Learning from the mistakes of others
 - We do not want to make the same mistakes again
 - QM and Q-managers are open for new and proven solutions
- QM does not intend to cause much additional work

ACHIEVEMENTS OF QM HEIZWERKE IN AUSTRIA


- Standardised quality requirements
- Same info and documents for all project participants (database)
- Data of Austrian biomass heating plants
- Efficiency of plants has improved
- Training of plant designers and operators
- Compulsory monitoring and optimisation
- Obligatory annual operating reports
- Close cooperation with funding agencies and ministries
- Possibility to contribute to national heat strategy

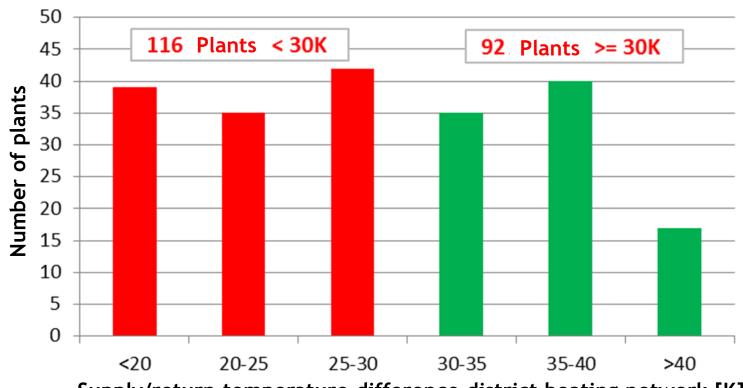
REDUCTION OF HEAT LOSSES





COMMON MISTAKES

- Insufficient knowledge of basic data during planning
 - Heat demand and heat capacity of the heat consumers
- Heat sale lower as expected
- Heat generation costs higher than expected

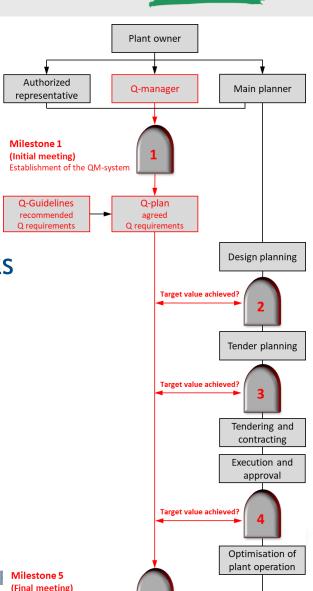


COMMON MISTAKES

Supply/return temperature difference district heating network [K]

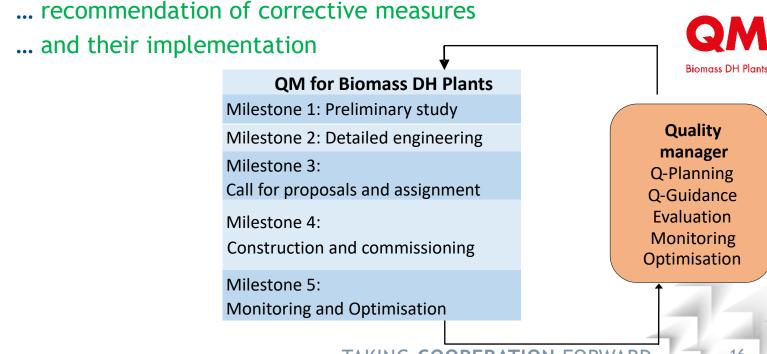
Evaluation by AEE INTEC based on data from the QM database

COMMON MISTAKES

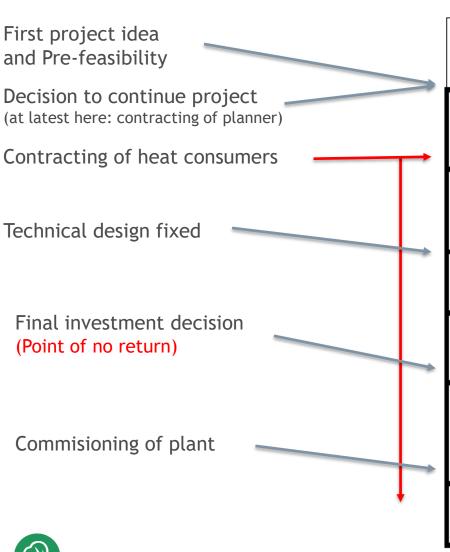

- Plant owner/investor ask for the impossible
- Oversized boilers, oversized network pipes
- Too extended (wide-spread) district heating networks
- Unclear/undefined control strategy
- Insufficient measurement instrumentation (sensors, ...)
- Unsuitable hydraulic installations
- Emission problems during low load operation
- Frequent technical faults/malfunctions
- High maintenance costs, reduced lifetime
- Insufficient plant documentation

BASIC PRINCIPLES OF QM FOR BIOMASS DH PLANTS

- Definition of a suitable planning process
 - Only high quality planning leads to high quality plants
 - High quality planning pays off immediately
 - Tasks and responsibilities !!!
- Definition of required data and documents
 - Basic data of the plant design
 - Basic data to determine the heat demand
 - Key figures (Benchmarks)
 - Documents and what they should contain!
 - Plant documentation
- Defined quality (QM) process



BASIC PRINCIPLE OF THE **QM PROCESS**


- Defining the quality at the beginning of a project
 - We plan the quality, which we want to achieve
- Continuously check of the quality in each project phase
 - If deviations are detected...

PROJECT TIMELINE

QM for Biomass DH Plants

project phases

1. Preliminary study

Result = Option that best meets the requirements

2. Design planning

Result = Determination of the technical solution

3. Tender planning

Result = Tender project

4. Tendering and contracting

Result = Contracts

5. Execution and approval

The main planner is obliged to report any changes to the tender project. Result = Approval documentation

6. Optimisation of plant operation

Result = Optimisation documents

Milestones

Start considering QM-guidelines!!

Awareness raising, know-how transfer, team building

> Apply QM before main decisions are

made

Don't forget to

finsh the process!

PUBLICATION SERIES OF QM-HOLZHEIZWERKE®

- Q-Guidelines (with q-plan)
- Planning handbook (revision for 3rd edition & translation ongoing)
- Standard hydraulic schemes part 1 and part 2
- Standard tender for wood boilers

Defines QM process+ Q requirements

Support for planning

Integral part of QM process

Support planning/tendering

Q-GUIDELINES STRUCTURE AND CONTENTS

Preface and brief introduction to QM

A Project participants

B Establishment of QM for Biomass DH Plants (= MS1)

- Tasks and duties: Q-manager, main planner, plant owner
- Recommendations for funding agencies

C Project structure with milestones

D Services plant owner

E Services and Q-requirements main planner

- Achievements in the individual milestones (MS1 MS5)
- Q-requirements

F Fuel definition

Glossary

Literature

Summary of QM process
Required data, documents and quality criteria

Annex + Checklists + document templates

KING COOPERATION FORWARD

QM PLANNING HANDBOOK

Valuable knowledge basis

In accordance with QM

Support for planer,

Q-managers, operators,...

Final version of English QM Planning Handbook coming soon!

Overview

	PART 1 - RATIONAL USE OF ENERGY			
	1	BIOMASS AS AN ENERGY SOURCE	. 14	
	2	QM FOR BIOMASS DH PLANTS	. 18	
	3	PROJECT DEVELOPMENT	. 23	
	PART 2	2 - BASICS	. 27	
	4	ENERGY FROM BIOMASS	. 28	
	5	PLANT COMPONENTS OF HEAT GENERATION	. 44	
	6	PLANT COMPONENTS OF FUEL STORAGE, FUEL CONVEYING AND ASH REMOVAL	. 61	
	7	HEAT GENERATION HYDRAULICS	. 75	
	8	PLANT COMPONENTS OF HEAT DISTRIBUTION	. 88	
	9	ASH	. 93	
	10	ECONOMIC EFFICIENCY	. 99	
PART 3 - PLANNING PROCESS 1				
	11	DEMAND ASSESSMENT AND APPROPRIATE SYSTEM SELECTION	112	
	12	HEAT DISTRIBUTION DESIGN	121	
	13	SYSTEM SELECTION OF HEAT GENERATION	128	
	14	DESIGN OF FUEL STORAGE, FUEL CONVEYING AND ASH REMOVAL	172	
	15	EXECUTION AND ACCEPTANCE OF THE BIOMASS BOILER SYSTEM	182	
	PART 4	4 - OPERATION AND MANAGEMENT	187	
	16	OPERATIONAL OPTIMISATION AFTER COMMISSIONING	188	
	17	OPERATION AND MAINTENANCE	194	
	18	OPTIMISATION AND REFURBISHMENT OF EXISTING PLANTS		
	APPEN	IDIX	208	
	19	REGULATIONS	209	
	20	IMPORTANT CALCULATIONS AND CONVERSIONS		
_	21	EMISSION FACTORS	219	
	22	GLOSSARY	220	
	23	LITERATURE	221	

QM AND DIFFERENT TYPES OF PROJECTS

- New plant
 - Standard QM process, QM mini
 - Simplified version according to Q-guidelines (for smaller plants)
- Plant enlargement
 - Standard QM process, simplified version, QM mini
- Optimisation, modernisation, revamping, refurbishment
 - Depending on the project and actions taken!
- CHP and special plant and/or ownership configurations

OPTIMISATION VS. REVAMPING

- There is no strict definition this is a guideline
 - In AT this is depends on funding schemes as well
- Optimisation (modernization)
 - Adjustment of control parameters, control strategy
 - Minor adjustments of plant components (adding storage tank at max)
 - Optimisation of DH substations/consumer heating systems
 - Consider guidelines, quality criteria,... From QM
 - usually no full QM process
- Revamping or refurbishment (modernization)
 - Major re-investments due to end of lifetime
 - Major change of system configuration (due to various reasons)
 - Full QM process possible

HOW FLEXIBLE IS QM?

• Minimum standards must be met!

- Quality of technical documents, completeness and plausibility of data
- Suitable dimensioning of plant and network & plant configuration
- We allow flexibility for future plant enlargement (if suitable plant configuration)
- It is hard to meet all requirements regarding heat demand assessment and consumer data
 - Even though it is highly important
 - Basic data for heat demand assessment (Detailed consumer data)
 - Determination of future heat sale potential
- NO flexibility regarding secured heat sale
 - Secured by contracts!

HOW FLEXIBLE IS QM?

- Standard hydraulic schemes & control strategy
 - Other solutions are possible, but they must be defined in detail
 - Insufficient control strategies are a common mistake!
- Basic plant instrumentation must be ensured
- Fuel quality must comply with furnace technology
 - Especially critical for small plants
- Q-requirements for fuel storage are flexible
 - Depend on fuel logistic concept
- Existing plants require more flexibility
 - Dimensioning and configuration can't be changed easily
 - Shortcomings of instrumentation
 - In AT an "improvement requirement" apply for plants originally being built without QM
- More flexibility can be granted to highly skilled and experienced planners and plant owners TAKING COOPERATION FORWARD

WHAT DOES QM NOT COVER?

- QM is focusing on
 - the planning process including the first operating period
 - technical issues
- QM does not directly address
 - Administrative issues and therewith related optimization (corporate form, management of plant, therewith related legal issues, insurance, billing,...)
 - Daily operating routines, practical operation strategies (fuel handling, furnace start-up,...)
 - Maintenance and regular system checks
 - Operation logbook
 - Customer relations

- ...

• However, do not forget that these issues are very important as well!

THANK YOU!

Christian Ramerstorfer AEE INTEC

Feldgasse 19, A-8200 Gleisdorf

www.aee-intec.at

c.ramerstorfer@aee.at

+43 3112 5886-262

twitter.com/AEE_INTEC

