

- Web, 26-27 maggio 2020
- Teleriscaldamento a biomassa e solare termico
 - ENTRAIN, A

SOLARE TERMICO...?

PERCHÉ SOLARE TERMICO PER TLR? COSTA DI MENO...

PERCHÉ SOLARE TERMICO PER TLR? C'È UN INCENTIVO...

Il Conto Termico 2.0 incentiva impianti fino a 2.500 m²

In 5 anni si recupera tra il 40% e il 65% dell'investimento

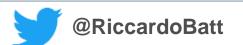
PERCHÉ SOLARE TERMICO PER TLR? NON OCCUPA TANTO SPAZIO...

Italia: 20% da solare su teleriscaldamento

PERCHÉ SOLARE TERMICO PER TLR? NON OCCUPA TANTO SPAZIO...

Fonte: Google Maps

PERCHÉ SOLARE TERMICO PER TLR? DIVERSE SOLUZIONI DI INSTALLAZIONE...


PERCHÉ SOLARE TERMICO PER TLR? DIVERSE SOLUZIONI DI INSTALLAZIONE...

Il funzionamento di un implanto solare termico

AFFIDABILE
Impianti di teleriscaldamento solare funzionano i
beneri in Austria. Dinimerca, Cermania e Svezia
ormai di qualche decina di anni.

ECONOMICO

Scegliere un impianto di grande taglia significa scendere da un costo specifico di 1000 €/m2 fino a 200-400 €/m2

SINERGICO E COMPLEMENTARE
L'integrazione con altre fonti rinnovabili
acquisitutto la biomassa, è ottima grazie alli
notavola iraza estiva.

CON COSTI PREVEDIBILI

Non avendo costi di esercizio: il calore solare ha un costo prevedibile dall'installazione per un periodo di almano 30 anni.

ATTRATTIVO PER L'UTENTE

Non presentando problemi di emissioni inc

Non presentando problemi di amissioni inquinanti o di rumore è una delle tecnologie più interessenti anche per l'utente finale.

NCENTIVATO

La schema di supporto Conto Termico 2.0' pu
coprrei tra il 40% o il 65% del costo di

POLITICAMENTE CORRETTO
 Is teleriscaldamento solare e indicato come un delle soluzioni da perseguire nella Strategia

9 OCCUPA POCO SPAZIO

Un impianto solare di appena 1000 m2 può coprire il carico estivo di una rete di

MOLTE SOLUZIONI DI INSTALLAZIONE
Coperture di stabilimenti industriali a
ciommerciali acre tetriche di centrale, barriere
antifumore, aree di recupere, edifici residenziali

PERCHÉ SOLARE TERMICO PER TELERISCALDAMENTO? SI PUÒ COMBINARE BENE CON LA BIOMASSA...

IL CASO TEDESCO

- «Villaggi bioenergetici»
- Calore ed elettricità da fonti energetiche rinnovabili locali

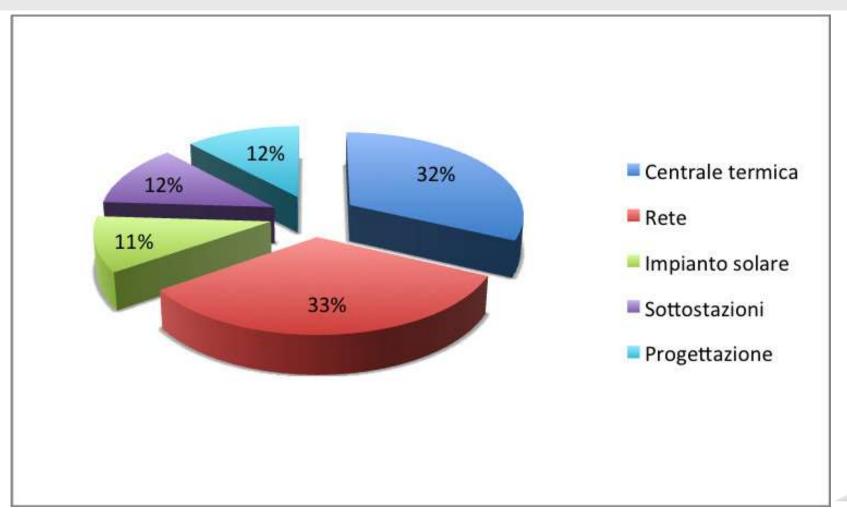
Caldaia a cippato + solare termico per teleriscaldamento

➤ 4.200 MWh/anno, 5 km, 100 edifici (anche strutture comunali

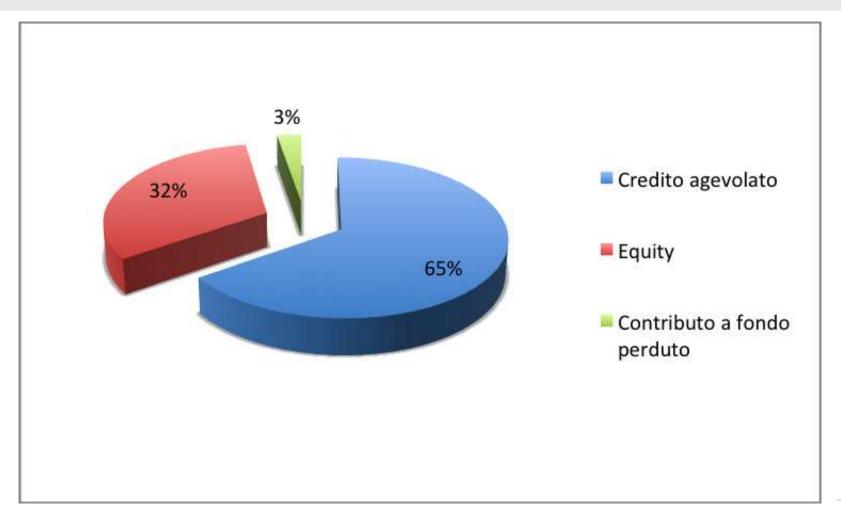
e ristorante)

- ➤ Due caldaie a biomassa, con potenze di 900 e 450 kW
- ➤ Caldaia di emergenza: 730 kW a olio combustibile
- ➤ Solare termico: 1.090 m² (3.000 m² di terreno)
- ➤ 100 m³ di accumulo
- ➤ Risparmio annuo di 600 m³ di cippato
- Collettori di grande dimensione

Fonte: Solarcomplex


- ➤ Frazione solare: 100% in estate, 15% annua
- 1.200 azionisti di Solarcomplex
- Manifestazioni di interesse da 60-70% utenti

heating plant (building incl. engineering)	1,200,00
heating network (>5.000 m)	1,250,00
solar thermal system (~1.000 sqm)	400,00
heat transfer stations in the buildings (> 100)	450,00
planning, external (approval, additional costs)	100,00
planning, internal (activated in-house effort)	350,00
TOTAL	3,750,00
TOTAL	3,750,00
own/share capital of solarcomplex AG	850,00
own/share capital of solarcomplex AG activated in-house effort KfW bank loan (Erneuerbare Energien Premium)	3,750,00 850,00 350,00 2,450,00



Fonte: Google Maps

Simmern (Neuerkirch-Külz)

- ➤ 4.200 MWh/anno
- ▶ 6,1 km di rete
- ▶ 150 edifici, 2 paesi, 800 utenti
- Solare termico: 1.422 m² (sottovuoto)
- ➤ 120 m³ accumulo
- > 4,5 milioni di €
- ➤ 100% prestito da banca statale KfW
- ➤ Tasso interesse: 0,05-0,25%

Fonte: Guido Bröer

Hallerndorf

Fonte: Google Maps

- ▶ 4.100 abitanti
- ➤ Circa 100 edifici
- ➤ 2,3 GWh/anno
- ➤ Solare termico: 1.300 m²
- ▶ 85 m³ di accumulo
- ➤ 20% copertura solare
- > 3,3 milioni di €
- Investitore: Naturstrom (utility rinnovabili elettriche)

Ellös, Svezia

- ➤ 4 MW_t caldaia a biomassa
- ➤ 1.000 m² solare termico
- ≥ 200 m³ accumulo
- ➤ Frazione solare annuale del 10%
- Spegnimento estivo della caldaia

Nordby-Mårup a Samsø

- ➤ 1 MW_t caldaia a cippato
- ≥ 2.500 m² solare termico
- ➤ 800 m³ accumulo
- ➤ 320 litri /m² installato
- ➤ 2 o 3 giorni senza sole
- Caldaia di emergenza a olio combustibile

Risultati sul campo

- Criterio di dimensionamento: 100% copertura estiva da solare (acqua calda sanitaria + perdite termiche)
- Spegnere le caldaie a biomassa, risparmiando combustibile, riducendo il tempo di funzionamento a carico parziale e limitando le ore di lavoro del personale addetto

Risultati sul campo

Austria: contributo estivo della caldaia di back-up limitato a circa l'1% del fabbisogno annuale

➤ Büsingen:

- > solare copre fabbisogno da fine giugno a metà agosto
- > In giugno anche la caldaia a cippato più piccola
- > da metà agosto a inizio settembre: solare + olio
- caldaia grande a cippato spenta da giugno a metà ottobre e quella piccola da fine giugno a metà settembre
- anche senza la necessità di un accumulo particolarmente grande

Risultati sul campo

- Nordby-Mårup a Samsø: nel periodo estivo è stato necessario accendere la caldaia a cippato o quella di emergenza per un totale di cinque volte
- ➤ Danimarca: un surplus di solare viene inviato a un circuito che mantiene caldo il boiler a biomassa per evitare un suo eccessivo raffreddamento e velocizzare l'avviamento

Studio fattibilità a Polverara (PD)

- ≥ 2 km, 133 utenti
- 1,2 GWh/anno di energia venduta
- Caldaia a cippato da 750 kW
- Caldaia di emergenza a gas (manuale)
- ➤ Temperature di rete: 65-75 °C
- Rendimento caldaia: 74%
 (60% al carico minimo di 350 kW)

Studio fattibilità a Polverara (PD)

➤ Solare: 220 m², 15 m³

➤ Produzione: 131 MWh/anno

➤ Frazione solare: 7%

➤ Risparmio cippato: 17%

SOLARE IN CITTÀ - VARESE

Resa annuale: 490 kWh/m² (+13%)

990 m² di solare termico

Costo del calore - Esempio di calcolo

- ➤ 2,000 m² solare termico
- ➤ Costo di 800.000 €
- Incentivo in 5 anni: circa 500.000 €
- ➤ Più del 60% dell'investimento
- Prestito a 10 anni
- Costo del calore (<u>su 15 anni</u>):
 - > 53 €/MWh con interesse al 6%
 - → 42 €/MWh con interesse al 4%
 - > 31 €/MWh con interesse al 2%

CONTATTI

Email: riccardo.battisti@ambienteitalia.it

https://it.linkedin.com/in/riccardobattisti
www.linkedin.com/company/ambiente-italiasrl

@RiccardoBatt

