

- PORDENONE 22/03/2022
- Formazione QM Dallo studio di pre-fattibilità all'ottimizzazione
- ENTRAIN | APE FVG | Francesco Locatelli

AGENDA

Studio di prefattibilità:

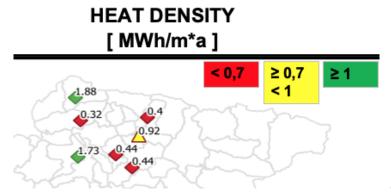
- Analisi della domanda di calore
- Rete di distribuzione e logistica
- Dimensionamento
- Valutazione fornitura di combustibile locale

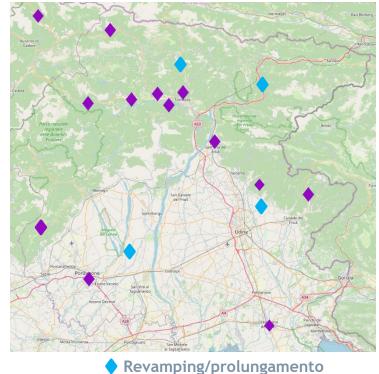
Q-circuiti standard:

- Classificazione schemi idraulici
- Esempio

Monitoraggio e ottimizzazione:

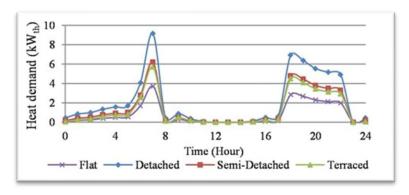
- Ottimizzazione lato utenza
- Ottimizzazione rete di distribuzione
- Ottimizzazione produzione di calore

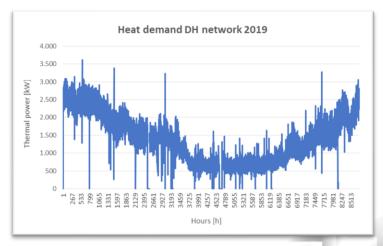



PARTE 1: LO STUDIO DI PREFATTIBILITÀ

APE FVG ha supportato le amministrazioni comunali del territorio sviluppando:

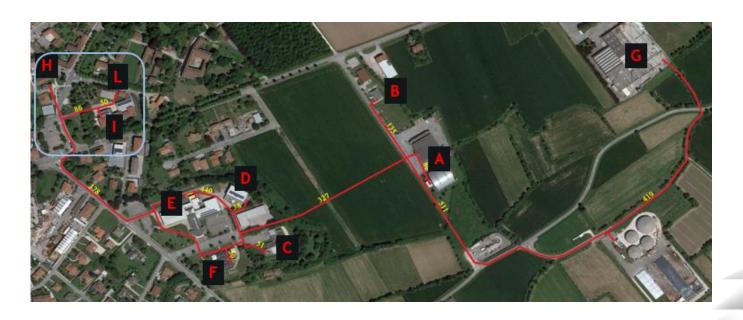
- 13 studi di prefattibilità per la realizzazione di nuovi impianti
- 10 analisi tecnico-economiche di impianti esistenti
- 4 studi di prefattibilità per interventi di revamping e/o prolungamento della rete




LA DOMANDA DI CALORE

TUTTO PARTE DALLA DOMANDA DI CALORE!

- Domanda annua totale kWh
- Profili di consumo
 - Giornalieri
 - Mensili
 - Stagionali
- Valore di picco
- Ore annuali di picco
- Progetti di riqualificazione edifici o espansione rete


LA DOMANDA DI CALORE

Il primo criterio QM riguarda la densità di calore lineare

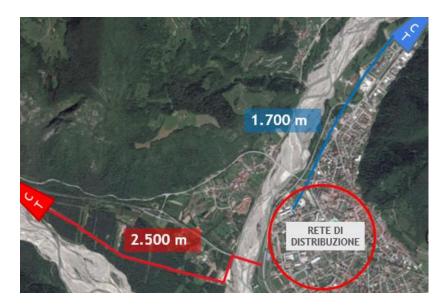
$$\frac{Vendita\ di\ calore\ annuale}{Lunghezza\ della\ rete} \left[\frac{kWh}{a*m}\right]$$

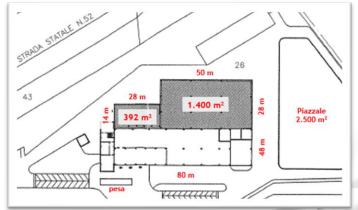
La vendita di calore giustifica la lunghezza della rete?

LA RETE - TOLMEZZO

- Individuare tutti gli edifici «energivori» dell'area
- Ipotizzare uno schema della rete di distribuzione

 Raccogliere i dati aggiornati e dettagliati sui consumi degli edifici





LA CENTRALE TERMICA - TOLMEZZO

- 4. Individuare le aree adatte ad ospitare la centrale termica tenendo conto di:
 - Logistica di rifornimento cippato e smaltimento ceneri
 - Disturbo alle abitazioni
 - Lunghezza delle tubazioni e aree di attraversamento
 - Disponibilità fabbricati preesistenti
 - Eventuali fonti secondarie di calore

La densità di calore lineare è di almeno 1000 kWh/(m*a)?

STRUMENTO EXCEL - 1

Strumento sviluppato dal gruppo internazionale di lavoro ARGE, per dimensionare i componenti principali e poter sviluppare uno studio di fattibilità più dettagliato.

Input richiesti per ciascun utente:

- Superficie di riferimento
- T_{MAX} di mandata e ritorno
- Domanda annua
- Potenza massima
 (divise per riscaldamento, ACS e calore di processo)

Inputs del progettista principale

Informazioni generali	Numero	1	2	3
	Indicazione	Ristrutturazione	Vecchio scuola	Processo
ļ				
ļ				
l	Calcolo della richiesta di calore sulla base di	Consegna del gasolio	Contabilità	Misurazione
ļ	Area di riferimento energetico [m²].	20000	10000	
ļ	Temperatura max. di mandata [°C]	80	80	80
	Temperatura max. di ritorno [°C]	50	55	60
Calore dell'ambiente	Domanda di calore [MWh/a]	2000	780	
ļ	Max. potenza termica per il riscaldamento degli ambienti [kW]	850	450	
ļ	Fattore di correzione per la richiesta di riscaldamento dell'ambiente [-]	1	0,85	
	Fattore di correzione del picco di riscaldamento [-].	1	1	
Acqua calda sanitaria	Domanda di calore annuale per l'acqua calda sanitaria [MWh/a]*	560	70	
	Max. richiesta termica per l'acqua calda sanitaria [kW]	130	20	
Calore di processo	Domanda annuale del calore di processo [MWh/a]*			500
l	Potenza max. richiesta per il calore di processo			100

Indicatori calcolati

Domanda di calore totale [MWh/a].	2560	850	50	
Calore dell'ambiente Ore di funzionamento a	a pieno carico per il riscaldamento degli ambienti [h/a]	2353	1733	
Domanda specifica del	calore per il riscaldamento degli ambienti [kWh/m²a]	100,0	78,0	
Domanda specifica del	la potenza per il ricaldamento degli ambienti [W/m²]	42,5	45,0	
Acqua calda sanitaria Ore di funzionamento a	pieno carico per l'acqua calda sanitaria [h/a]	4308	3500	
Domanda specifica en	ergetica per l'acqua calda sanitaria [kWh/m²a]	28,0	7,0	
Calore di processo Ore di funzionamento a	pieno carico per il calore di processo [h/a]			500

Utenze aggregabili per tipologia

STRUMENTO EXCEL - 2

Input ambientali:

- Temperatura minima esterna
- Temperatura interna
- Operazione estiva
- Fattori di contemporaneità
- Perdite di calore della rete

Inputs del progettista principale

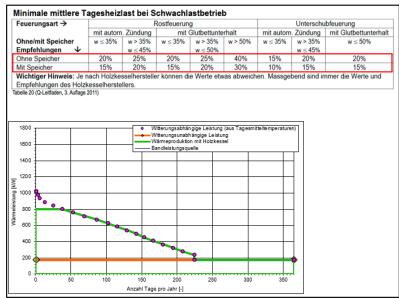
Informazioni generali	Paese	Italien (IT)
	Stazione climatica	Tolmezzo (IT)
	Temperatura esterna più bassa [°C]	-7
	Temperatura ambiente [°C]	20
	Limite di riscaldamento [°C]	15
	Max. Temperatura di mandata principale [°C]	85
	Funzinamento estivo	Si ▼
Calore dell'ambiente	Quota non dipendente dalle condizioni climatiche della richiesta di calore	
	per il riscaldamento degli ambienti [%].	5
	Fattore di simultaneità per il calore ambientale [-]	1
Acqua calda sanitaria	Fattore di simultaneità per l'acqua calda [-]	1
Calore di processo	Fattore di simultaneità per il calore di processo [-]	0,56
Rete di teleriscaldamen	to Perdita annuale di calore della rete di teleriscaldamento [MWh/a]	393,3
	Perdita di potenza della rete di teleriscaldamento [kW]	44,9

7 stazioni meteo FVG già incluse!

Input sull'impianto di produzione:

- Circuito idraulico standard di riferimento
- Potenze nominali delle caldaie
- Domanda minima media giornaliera in periodo di basso carico

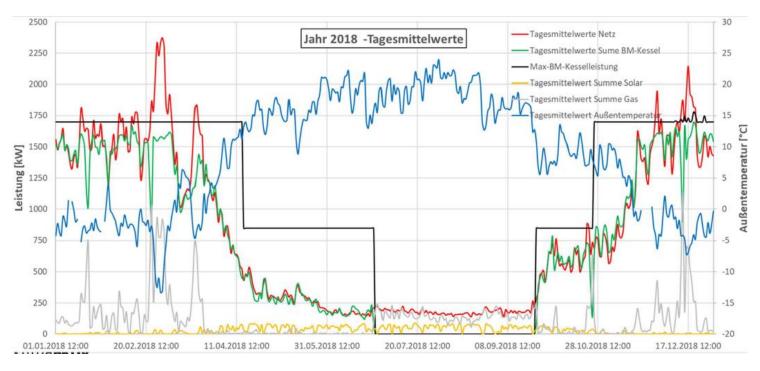
Schemi standard secondo QM	WE4
Potenza nominale della caldaia a legna 1 (piccola caldaia per WE1 - WE8) [kW].	900
Potenza nominale della caldaia a legna 2 (grande caldaia per WE5 - WE8) [kW].	
Potenza nominale di altre caldaie a legna totale [kW].	
Numero di caldaie a legna installate se ci sono più di due caldaie a legna [-].	
Potenza nominale della caldaia a legna totale [KW]	900
Potenza nominale della caldaia bivalente Totale (ad es. gasolio, gas) [kW].	1.500
Volume dell'accumulo installato [m³]	30
Differenza della temperatura di mandata e di ritono nell'accumulo [K] *32,4 K	30,0
Carico minimo medio giornaliero di riscaldamento con funzionamento a carico basso (vedi	15%
Tabella 20 sotto) [%].	1370
Massima potenza media giornaliera della caldaia a legna (valore da 70% a 100%)	90%
Massima potenza media giornaliera della fonte di alimentazione di base [kW]	0



STRUMENTO EXCEL - 3

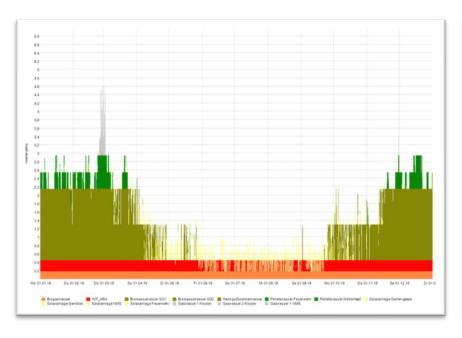
Lo strumento Excel calcola i valori attesi della configurazione immessa e li evidenzia in verde o rosso a seconda degli obiettivi QM:

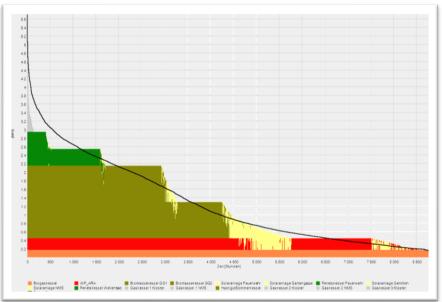
- Ore di funzionamento caldaie
- Dimensionamento caldaie
- % di calore da biomassa
- Volume accumulo
- Condizioni a basso carico


Indicatori calcolati		Risult	ato	Confronto
Impianto di riscaldamento	Ore di funzionamento a pieno carico della caldaia a legna [h/a]	4.3	314	3500
	Ore di funzionamento a pieno carico delle caldaie bivalenti [h/a]		7	_
	Produzione annua del calore prodotto con la legna [%]	99,	,7%	80%
	Grandezza dell'accumulo [m ⁸]	3	30,0	29,2
	Condizioni a basso carico [kW]	15	50,0	175,2
	Progettazione della caldaia a legna	64,	,0%	50% - 60%
			-	_
			-	_
	Progettazione caldaia bivalente [kW]		500	1094 kW - 1563 kW
	Confronto dei dati di potenza con i dati energetici (grafico in basso a sinistra in immagii	ne_IT) 75,	,0%	95% – 105%

LOAD DURATION CURVE - 1

Analizzare reti esistenti con una consistente disponibilità di dati può aiutare a dimensionare adeguatamente nuovi progetti


Produzione delle varie fonti e domanda della rete di teleriscaldamento di Gleisdorf (AT)

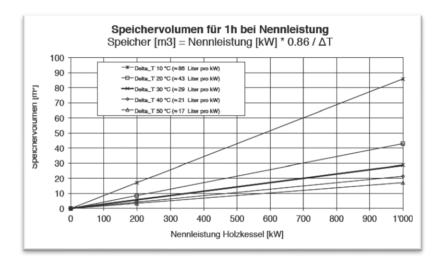


LOAD DURATION CURVE - 2

La Load Duration Curve è un ottimo strumento di analisi della domanda e pianificazione della centrale termica

Produzione delle varie fonti e domanda della rete di teleriscaldamento di Gleisdorf (AT)

DIMENSIONAMENTO CALDAIA E ACCUMULO



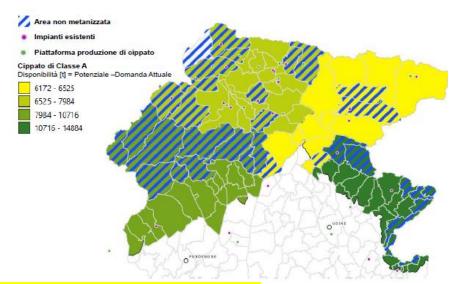
Oltre allo strumento Excel già presentato vi sono tabelle e grafici per il dimensionamento dei componenti nelle Q-linee guida

Tipo di forno→		F	orno a grig	lia		Forno sottoalimentato			
		censione natica	ı	d-by (manu etto antince			ensione natica	con stand-by (manutenzione del letto antincendio)	
Con/senza accumulo termico raccomandazioni ↓	w ≤35%	w ≤35% w≤45%	w≤35%	w>35% w≤50%	w>50%	w ≤35%	w>35% w ≤45%	w ≤50%	
Senza	20%	25%	20%	25%	40%	15%	20%	20%	
Con	15%	20%	15%	20%	30%	10%	15%	15%	

Nota importante: i valori possono variare leggermente secondo il produttore della caldaia a biomassa. I valori e le raccomandazioni del costruttore della caldaia a biomassa sono sempre decisivi.

STRUMENTO PER DIMENSIONARE LA CALDAIA.
IN BASE ALLE CARATTERISTICHE DELL'IMPIANTO E DEL
CIPPATO LA TABELLA FORNISCE IL CARICO MINIMO MEDIO
IN PERIODO DI BASSA DOMANDA (FUNZIONAMENTO
ESTIVO) IN % DELLA POTENZA DI CALDAIA. AVENDO LA
POTENZA RICHIESTA DALLE UTENZE NELLO STESSO
PERIODO SI CALCOLA LA CAPACITA' DA INSTALLARE

DIMENSIONAMENTO DELL'ACCUMULO IN BASE AL ΔT E ALLA POTENZA NOMINALE DELLA CALDAIA. E' DEFINITO UN VOLUME IN I/kW



DISPONIBILITÀ DI BIOMASSA

Valutare subito la disponibilità di cippato locale:

- Potenziale boschivo
- Segherie e industrie del legno
- Piattaforme logistiche
- Qualità del cippato

	PIANO DI GESTIONE								
			CONIF	ERE			LATIFO	GLIA	
COMUNE	Periodo [anni]	Utilizzazione [m3]	Uso come biomassa	Uso come biomassa [m3]	[m3/a]	Utilizzazione [m3]	Uso come biomassa	Uso come biomassa [m3]	[m3/a]
Gemona	12	4.550		3.185	265	12.450		9.960	830
Venzone	15	640	70%	448	30	9.860	80%	7.888	526
Trasaghis	15	4.950		3.465	231	9.300		7.440	496
				TOTALE	526			TOTALE	1.852

PARTE 2 - SCHEMI IDRAULICI STANDARD CENTRAL EUROPE European Regional Development Fund

Il sistema QM ha individuato 8 schemi idraulici standard cui fare riferimento nel processo di progettazione.

Per ogni schema è riportato:

- Strategia di controllo
- Descrizione dettagliata del funzionamento
- Lista strumentazione
- Valori di riferimento

Biomass DH Plants

Schemi
idraulici
standard
Parte I

Hans Rudolf Gabathuler
Hans Mayer

Gruppe di lavere QM Biomass DH
Plants

Suzzera: Holzenerge Schweiz
Auster. AEE - Istiulo per le konologie
sostenolai
Baden-Wurtermberg: Università di
Scherza Applicate
Scherza Neurola Scherza Scherza Guila

I sistemi di sicurezza non sono inclusi negli schemi in quanto vanno installati secondo la normativa nazionale!

FONDAMENTALI

Gli schemi idraulici sono configurazioni

- Testate nel corso degli anni
- Permettono un controllo preciso
- Minimizzano i problemi idraulici
- Flessibili alle situazioni specifiche
- Consentono un monitoraggio dettagliato
- Permettono espansioni future della rete e della centrale termica

La variabile di controllo principale è sempre il setpoint della/e caldaia/e

- Le caldaie modulano tra il 30-100% della potenza
- On/Off sotto il 30%

VALORI DI RIFERIMENTO

I valori obiettivo sono riportati in tabelle suddivise per taglia della caldaia

0-4	Set-up Description					T	otal heat cap	acity							
Set-up		De	scripti	on			100500 kW		50	011000 kW		> 1000	> 1000 kW		
	_	Anı	nual he	at pro	duction wi	th biomass	8090%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			\ r	a contama conthe cont	1		
<u>e</u>	ier	De	sign of	wood	boiler cap	acity	5060%*						systems without er operation, it is		
2	o po	De	sian of	oil/gas	boiler ca	pacity	Min. 70%, max. 1	00%					le that only 1		
Jas	ass	Nu	mber o	f full lo	ad operat	ing hours of	> 3500 h/a	l					ss boiler + 1 oil/gas		
oil/gas boiler ge	1 biomass boiler)	WO	od boile	er			Target 4000 h/a						can be useful for		
~ E					Annual he	at production	with biomass	ما الما الما الما الما الما الما الما ا	-	100%]
ste	Mit.						er capacity 1	→ Daniantina		33% withou	it load pe	eaks			1
biomass boiler + with sto	16						er capacity 2	Realisation of	OT :	67% withou	t load p	eaks			1
SS	4	age			Number o	f full load ope	erating hours	summer		> 2000 h/a					1
ma .	×.	ţ			biomass b	oiler 1+2		operation							
	WE4 (WE14/16 with	with storage			Low load	operation		may only be		Compliance	with Ta	ıble 16 w	ith the small biomass b	boiler usually	
_	>	Ž				Annual he	at production with b	niomass					8090%		
Guiding	n value	boilers	WE6	_	<u> </u>	Design of	biomass boiler cap	acity 1					1720%		
Odiding	y value	ö	>	ie ie	<u>ler</u>	Design of	biomass boiler cap	acity 2					3340%*		
				oil/gas boiler	orage 2 biomass boilers)	Design of	oil/gas boiler capac	itv					Min 100% - small bi	omass boiler, ma	ax. 100%
		biomass		gas	ass	Number of	f full load operating	hours					> 3000 h/a		
		ģ			om Ge	biomass b	oiler 1+2						Target 4000 h/a		
		7		-	ora 2 bi	Low load	operation						Compliance with the	Table 16 with th	e small
				20 4	∯ §								biomass boiler		
1:000				boilers	with storage 16 with 2 bion								or oil/gas boilers		
lima a	KU				, 7	Automatic	ignition?						For the small biomas		
•	aral Ministry ublic of Austria batte Action Enginement								No restriction; for au						
deral Ministr			reserve						Possible through oil/		reduction				
public of Aus	tria	ant.		2 b	ΛĘ	01	24						of the biomass cover		
ergy, Mobility	orgy, Mobility,							≥ 1 h related to rated	d output of large	biomass					
novation and	Technolog	У											boiler		

TABELLA RIASSUNTIVA

Sul sito https://qm.ape.fvg.it/ è disponibile una unica tabella riassuntiva di tutti gli schemi idraulici.

Q-schemi idraulici standard

impromi semici o segrio								
Descrizione	WE1	WE2	WE3	WE4	WE5	WE6	WE7	WE8
Tipologia	Monovalente	Monovalente	Bivalente	Bivalente	Monovalente	Monovalente	Bivalente	Bivalente
Fonte energetica	Biomassa	Biomassa	Biomassa + Gasolio/Gas	Biomassa + Gasolio/Gas	Biomassa	Biomassa	Biomassa + Gasolio/Gas	Biomassa + Gasolio/Gas
Numero di caldaie	1	1	2	2	2	2	3	3
Presenza serbatoio di accumulo	NO	SI	NO	SI	NO	SI	NO	SI
Copertura della domanda di calore annuale (per il riscaldamento, per l'acqua calda sanitaria e di processo) con energia da biomassa	100%	100%	80% ÷ 90%	80% ÷ 90%	100%	100%	80% ÷ 90%	80% ÷ 90%
Copertura della domanda di potenza termica annuale con caldaia a biomassa	100%	100%	60% ÷ 70%	50% ÷ 60%	100%	100%	60% ÷ 70%	50% ÷ 60%
Copertura dei picchi di potenza termica	Caldaia	Accumulo	Caldaia a Gasolio/Gas	Accumulo	Caldaia	Accumulo	Caldaia a Gasolio/Gas	Accumulo
Funzionamento alle basse potenze con biomassa (periodo di transizione/estate)	Solo se i valori richiesti sono compatibili con le caratteristiche della caldaia	Solo se i valori richiesti sono compatibili con le caratteristiche della caldaia	Se i valori richiesti sono compatibili con le caratteristiche della caldaia, altrimenti utilizzare la caldaia a gasolio/gas	Se i valori richiesti sono compatibili con le caratteristiche della caldaia, altrimenti utilizzare la caldaia a gasolio/gas	Solitamente possibile grazie alla ridotta potenza termica di una o di entrambi le caldaie	Solitamente possibile grazie alla ridotta potenza termica di una o di entrambi le caldaie	Solitamente possibile attraverso la caldaia a biomassa più piccola, altrimenti attraverso la caldaia a gasolio/gas	Solitamente possibile attraverso la caldaia a biomassa più piccola, altrimenti attraverso la caldaia a gasolio/gas
Grado di sicurezza della fornitura di calore	Adeguato	Adeguato	Elevata grazie alla caldaia a gasolio/gas	Elevata grazie alla caldaia a gasolio/gas	Adeguato	Adeguato	Elevata grazie alla caldaia a gasolio/gas	Elevata grazie alla caldaia a gasolio/gas
Sovradimensionamento della potenza termica per un futuro ampliamento dell'impianto	Ammesso solo in casi eccezionali, a causa dei problemi di funzionamento alle basse potenze	Ammesso solo in casi eccezionali, a causa dei problemi di funzionamento alle basse potenze	Possibile attraverso il sovradimensionamento della caldaia Gasolio/Gas (con conseguente riduzione della percentuale di copertura della domanda di calore ottenuta da biomassa)	Possibile attraverso il sovradimensionamento della caldaia Gasolio/Gas (con conseguente riduzione della percentuale di copertura della domanda di calore ottenuta da biomassa)	di investimento	Possibile ma attenzione all'aumento dei costi di investimento (caldaie a biomassa costose)	riduzione della percentuale	Possibile attraverso il sovradimensionamento della caldaia Gasolio/Gas (con conseguente riduzione della percentuale di copertura della domanda di calore ottenuta da biomassa)

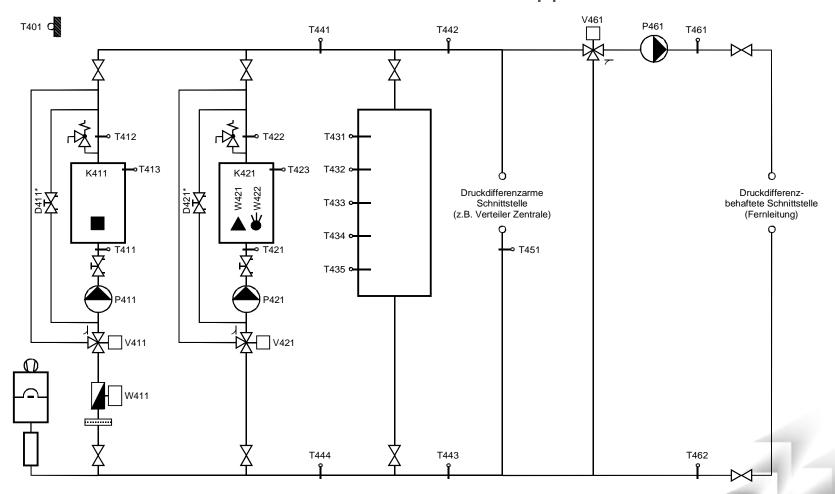
I documenti integrali saranno presto online

VARIABILE DI CONTROLLO

La variabile di controllo (setpoint della caldaia) è controllata in base a:

- Nei sistemi senza accumulo, alla temperatura di mandata in rete
- Nei sistemi con accumulo, allo stato di carica dell'accumulo

È stato sviluppato anche un secondo documento, che replica gli 8 schemi idraulici ma cambia la strategia di controllo. Il setpoint della caldaia viene ora controllato in base alla temperatura di ingresso:


- -> utilizzando la valvola di miscelazione prima della caldaia
- -> variazione della temperatura di uscita della caldaia
- -> il sistema di controllo vuole una T_{MANDATA} costante, quindi varia il setpoint

ESEMPIO

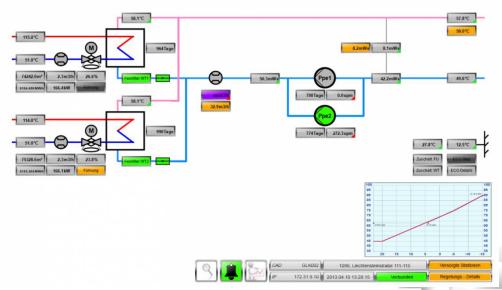
Schema 4 - sistema bivalente 1 caldaia a cippato con accumulo

PARTE 3: MONITORAGGIO E OTTIMIZZAZIONE

Perché è importante prevedere l'ottimizzazione fin dall'inizio?

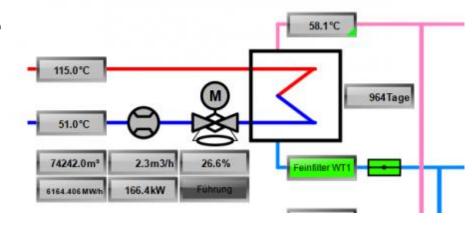
Nonostante una corretta pianificazione e costruzione ci sono molti elementi di incertezza rispetto ai valori di progetto:

- Fluttuazioni del valore e del profilo della domanda di calore (ed errori di stima)
- La sola fase di collaudo non è rappresentativa delle condizioni che si possono presentare durante un anno
- Mancanza di esperienza nel gestire l'impianto
- Variabile qualità del combustibile fornito
- Aumento della domanda di calore dovuto all'espansione e densificazione della rete


OTTIMIZZAZIONE NEL TLR

Aree di ottimizzazione:

- 1. Utenza Temperatura di ritorno
- 2. Rete di distribuzione
- 3. Produzione del calore



1 - UTENZA E TEMPERATURA DI RITORNO (TRITORNO)

Monitorare e analizzare l'influenza dei singoli utenti sulle temperature di ritorno rispetto a quelle di mandata. Approfondire sugli utenti più rilevanti:

- Profilo domanda
- Sistema di riscaldamento
- Efficienza pompe
- Efficienza scambiatore
- Efficienza preparatore ACS

Interventi di efficienza per abbassare Tritorno

Incentivo per utenti con Tritorno minori?

1 - UTENZA E TRITORNO - ESEMPIO

Domanda di calore: 3.224.000 kWh

Lunghezza rete: 8.700 km

Densità 370 kWh/m

Caso A:

TMANDATA: 85° TRITORNO: 55°

Perdite di rete: 1.454 MWh

Produzione calore: 4.678 MWh

Perdite %: 31,1%

Volume pompato: 137.083 m³

Consumo pompe: 27.965 kWh

Caso B:

TMANDATA: 85° TRITORNO: 40°

Perdite di rete: 1.272 MWh

Produzione calore: 4.496 MWh

Perdite %: 28,3%

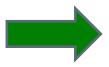
Volume pompato: 87.838 m3

Consumo pompe: 9.470 kWh

FABBISOGNO ELETTRICO: -66,1%

FABBISOGNO DI BIOMASSA: -12,5%

PERDITE DI CARICO: -3%



2 - RETE - DENSIFICAZIONE

Importante lavorare su indicatori generali del sistema:

Densità di calore lineare kWh/m*a

Densificazione utenze

Aumentare vendite di calore con minimo prolungamento della rete!

2 - RETE - TUBATURE

Perdite di calore kWh/kWhimmessi

Tubature di qualità e dimensionate correttamente

- * Ridurre il diametro se sovradimensionato,
- Utilizzare migliori isolamenti,
- Scegliere la tecnologia twin pipe dove possibile

Wärmeverlust (QR) lt. Verlegeskizze für ein DUO-PEX-Rohr – Dämmserie 1

Тур	U-Wert	mittlere Bet	mittlere Betriebstemperatur TB (°C)					
PEX03-1	W/mK	40°	50°	60°	70°	80°		
25+25/91	0,1786	5,36	7,14	8,93	10,72	12,50		
32+32/111	0,1829	5,49	7,32	9,15	10,97	12,80		
40+40/126	0,2108	6,32	8,43	10,54	12,65	14,76		
50+50/162	0,1954	5,86	7,82	9,77	11,72	13,68		
63+63/182	0,2381	7,14	9,52	11,91	14,29	16,67		
75+75/202	0,2802	8,41	11,21	14,04	16,81	19,61		

2 - RETE - FATTORE DI UTILIZZO

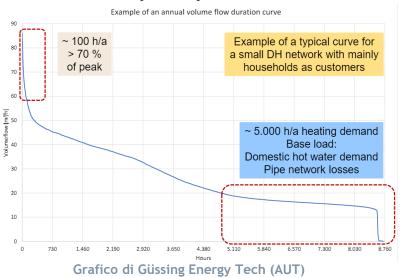
Fattore di utilizzo
 (ore equivalenti a pieno carico)

Dimensionamento: Centrale termica - Scambiatori

Grazie ad un adeguato dimensionamento si ottengono:

- Fattori di utilizzo più alti
- Funzionamento più stabili
- Minore necessità di manutenzione
- Minori emissioni locali

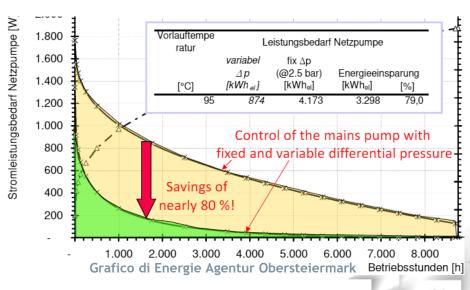
Centrale termica	[ore]
In funzione di: * schema idraulico * funzionamento annuale o solo invernale	2.000 - 4.000


Utenze	[ore]
Residenziale	1.600 - 1.800
Hotel	1.800 - 2.000
Scuole	1.300 - 1.600
Ospedale	2.000 - 2.200

2 - RETE - POMPE

Consumo pompe elettriche kWhelettrico/kWhtermico

Carico variabile anche nelle operazioni quotidiane/settimanali

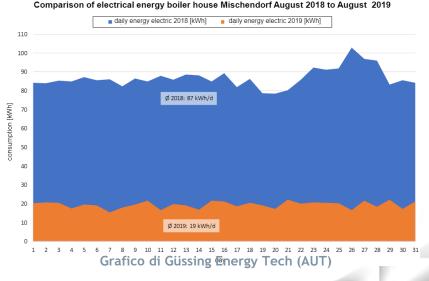


Pompa con differenziale di pressione variabile

95% del tempo P < 60% del picco 43% del tempo P < 25% del picco

Pompa secondaria per funzionamento estivo

2 - RETE - ESEMPIO POMPE



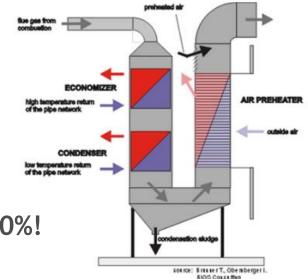
- Esempio di ottimizzazione di rete di teleriscaldamento austriaca. Bassa densità di calore e alte perdite, con pompa sovradimensionata per utilizzo estivo:
 - volume operativo pompa 6-20 m³/h
 - 32% del tempo $V < 2 \text{ m}^3/\text{h}$ con $\eta = 3,2\%$
 - < 8% del tempo con η > 30%

Pompa secondaria per funzionamento estivo

Risparmio di 20 MWh/anno!

3 - PRODUZIONE - RECUPERO CALORE

- Impianto recupero di calore a condensazione:
 - Utilizza il calore della condensazione del vapore dei fumi per pre-riscaldare l'acqua di ritorno TLR e l'aria di combustione
 - Investimento rilevante sia da un punto di vista economico che di complessità dell'impianto, sensato su impianti di taglia mediogrande

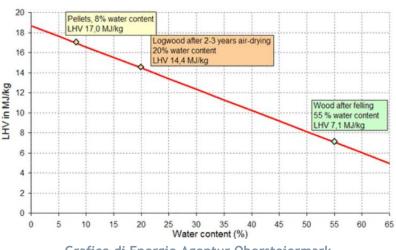

Esempio:

Nell'impianto di Krumpendorf (Klagenfurt):

- Pre-riscaldamento dell'acqua di ritorno dal TLR da 48°C a 55°C
- Uso di pompe di calore e solare termico

Efficienza complessiva dell'impianto vicina al 100%!

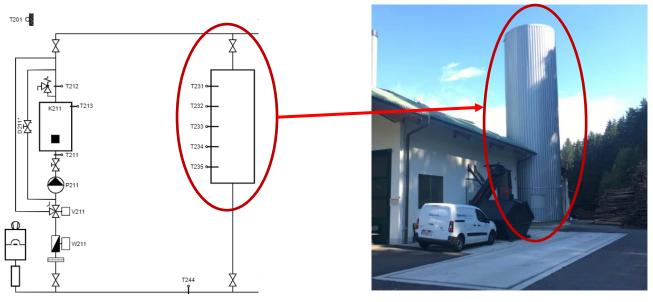
3 - PRODUZIONE - CIPPATO



Contenuto d'acqua nel cippato

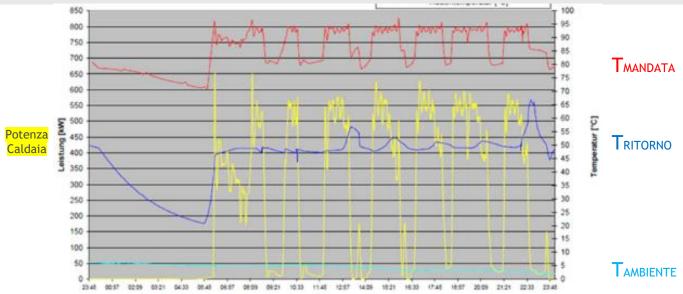
Stoccaggio/essiccazione

Vettore energetico	Contenuto di Acqua	Potere Calorifico Inferiore [MJ/kg]
Pellet	8%	17
Legno stagionato	20%	14,4
Legno appena abbattuto	55%	7,1



3 - PRODUZIONE - ACCUMULO TERMICO

Vantaggi di un accumulo termico adeguatamente dimensionato:


- Suddivisione tra la fase di produzione e di distribuzione del calore
- Funzionamento più lineari della caldaia e conseguente riduzione delle emissioni
- Copertura dei picchi di consumo
- Migliore integrazioni di ulteriori fonti di calore non programmabili (solare, calore di scarto industriale)

3 - PRODUZIONE - ESEMPIO ACCUMULO

Problemi:

- La caldaia (giallo) insegue l'andamento della domanda
- Picchi, spegnimenti e accensioni causano rendimenti bassi ed alte emissioni

Soluzione accumulo:

- Immagazzinare il calore prodotto dalla caldaia che lavora a potenza costante
- Soddisfare i picchi di domanda

MONITORAGGIO

Il monitoraggio è fondamentale per la fase 5:

- In Austria bisogna stilare un report operativo ogni anno per i primi 10 anni di operazione
- Schemi idraulici definiscono punti di misurazione
- Definire formato di raccolta e salvataggio dati
- Definire responsabilità uso dati

QM raccomanda misurazioni ogni 5 minuti su un intervallo di misurazione di 10 secondi.

VALORI VERIFICATI A CUI PUNTARE

Valori di riferimento

frutto del monitoraggio di

215-364 impianti gestiti secondo QM in Austria

INDICATORE	UNITA'	TARGET	MEDIA
Calore venduto rispetto a ipotesi di progetto	%	100	89,0
Densità lineare di calore	MWh/(m*a)	1.200	1.143
Fattore di utilizzo della caldaia	h/a	2.500	2.616
Efficienza annuale di produzione	%	85	86,2
Efficienza energetica totale	%	75	71,2
Perdite di rete	%	15	18,6
Differenza di temperatura mandata e ritorno	°K	30	28,6
Consumo specifico di elettricità dell'impianto	kWh _{elettrici} /MWh _{termici}	20	17,9

GRAZIE!

Francesco Locatelli APE FVG

UD - 33013 - Gemona del Friuli, Via Santa Lucia, 19

www.interreg-central.eu/entrain

http://www.ape.fvg.it/entrain/

http://qm.ape.fvg.it/

+39 351 7487485

Francesco.locatelli@ape.fvg.it

@ENTRAIN_project

