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1. INTRODUCTION 
 
The subject of this part of the feasibility study is the analysis of the use of artificial 

intelligence elements in the monitoring and control system of the Integrated Transport 

System of the South Moravian Region (hereinafter referred to as IDS JMK). The target 

application for the pilot verification of the possibilities of artificial intelligence tools 

(hereinafter referred to as AI) is the detection and localization of exceptional traffic 

conditions in the South Moravian Region in real time, i.e. detection of anomalies compared 

to defined timetables, including short and long-term closures. 

 

Within the study document - technical part, the following areas are mainly processed: 

 
 

• A brief introduction to artificial intelligence and the genesis of the project plan. 

• The current state of the monitoring and control system of the IDS JMK. 

• Definition of the task of anomaly detection and localization. 

• Technical resources and knowledge requirements for AI tasks. 

• Available solutions and concept of anomaly detection system. 

• Framework estimate of the implementation schedule. 

 

1.1. Definition of the study area 

The study document - technical part includes information concerning the technical and 

technological part of the feasibility study using artificial intelligence elements for 

automated detection of anomalies in the operation of the JMK. The study does not contain 

an analysis of organisational and economic parameters and risks necessary for the overall 

evaluation of the investment plan, except for a framework estimate of the 

implementation schedule, which can be used together with other documents to determine 

the economic costs of the project. 

The design of the concept of the anomaly detection system is focused on the specific 

conditions and requirements of the IDS JMK. The possible portability of the concept to 

transport systems of other regions or to completely different systems, e.g. industrial or 

medical, is due to the broad generality of the AI methods used and the partial unification 

of transport management systems, e.g. the use of data formats or the way of organising 

the operation of lines. 

 
1.2. A brief insight into the function of artificial intelligence 

Artificial intelligence is defined in the most general terms as the simulation of the 
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manifestations of human intelligence with the help of machines [1]. A characteristic of AI 

is the ability to autonomously choose decisions that will lead to the achievement of a goal, 

based on previous experience and current measurements. The first modern age systems 

using AI elements date back to the 1950s 

20th century and were proposed following the work of British mathematician Alan Turing 

(1912-1954). These were usually single-purpose demonstrative computer programs 

simulating board game players. The practical extension of AI into transportation and 

industrial applications was only made possible after the start of the 3rd millennium by the 

2009 breakthrough when Nvidia increased the performance of computing stations by an 

order of magnitude by using new graphics processing units (GPUs) and then by the 

introduction of tensor processing unit (TPU) architectures by several different 

manufacturers. 

A fundamental part of AI is Machine Learning (ML), a field of methods designed to extract 

and transfer knowledge (not information or data) from a real system to a computer model 

[2]. An illustrative example of the use of ML in transportation can be autonomous vehicles, 

whose firmware is adapted to the observed behaviour of human drivers in sub-modular 

systems, e.g. lane recognition, traffic lights, pedestrians and cyclists, horizontal and 

vertical traffic signs, driver fatigue detection, evaluation of imminent collisions, etc., 

among others, using machine learning. 

In terms of application, AI is divided into strong and weak artificial intelligence. Currently, 

only weak AI is implemented in practice, representing systems that solve goal-specific 

tasks such as playing chess or using a personal electronic assistant on the web or on the 

phone. Strong AI, on the other hand, is represented by systems that solve complex tasks 

in a similar way to a human and does not require their additional interaction or control, 

and has been the subject of basic research to date. Examples include the aforementioned 

autonomous vehicle, for which legislation plays a crucial role alongside technology, or the 

extremely precise robotic execution of complex surgical procedures. These examples are 

(2021), irrespective of the marketing claims made by manufacturers, still at an early stage 

of development and in practice require predominantly human interaction. 

For a basic illustration of the principle of machine learning and thus its characteristic 

features (parameters and conditions of use), it is appropriate to use the example of human 

learning. In order to build a functional application / educate a human individual, it is 

necessary to have computational capacity (computer / brain) and a high number of 

learning examples, on the basis of which the initially empty model (in the case of a 

machine, an artificial neural network, decision tree, etc.) is set to a working point. This 

stage is called the learning stage in the case of the machine and the human individual, 

and is iterative and computationally, data- and thus time-consuming (Fig. 1). The second 

stage is the inference stage, or prediction stage, in which the already learned model 

performs work in accordance with previously presented examples and, depending on the 

specific task, usually also in real time. 
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Fig. 1: Flow chart of machine learning with a teacher - learning (top) and prediction (bottom) 
phases. 

 

 
The method of learning, simplistically and inaccurately programming, the AI model is again 

similar to the case of learning of a human individual either batch or incremental. Batch 

means that the model is set up once using an input dataset (called a dataset) and then 

run in the same state over and over again. In this case, the difference with traditional 

methods of designing systems without AI is the possibility of implementing tasks for which 

the analytical solution is not known. The second learning method mentioned above, i.e. 

incremental, allows, even after the initial batch initialization of the model, its further 

adaptation (tutoring) to new data that may differ from the original data. The incremental 

learning method is more complex in terms of system architecture, but has the ability to 

adapt to changes in the system at runtime. 

Another essential characteristic of AI systems, which should be noted in the introductory 

chapter, especially from the practical point of view of subsequent implementation, is the 

so-called teacher and non-teacher learning. Learning with a teacher represents such a 

process of training (from the practical point of view of the end user, the term setup is 

more apt) a model in which for a given input data we also know its correct classification 

(ground-truth). For example, for a known delay t of a car in a traffic system located at 

time of day d and according to the geographical information obtained from a satellite 

navigation system (GPS/Galielo/Glonass, etc.) at a specific location m, the information 

whether it is an anomaly or normal traffic is available already in the learning phase (the 

so-called dichotomous task). The second variant, i.e., learning without a teacher, is a 

specific way of searching for unknown structure in unannotated data, often inaccurately 

reported as cluster analysis. 

Last but not least, it is also important to mention a general disadvantage of all AI systems, 

namely, for most models, low interpretability, i.e. the external readability of the way 

knowledge is stored in the model structure. As a consequence of this property, it is not 

possible, at least easily and quickly, to trace the reasons for a specific prediction of a 

model, e.g. when analysing its behaviour, because the knowledge is stored in a complex 
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and extensive structure depending on the type of model a high number of interconnected 

elements. This is especially true for artificial neural networks (hereafter referred to as 

ANNs). 

The influence and practical impact of the above mentioned basic AI features on the 

anomaly detection system in the IDS JMK transport system is described in the chapter 

Concept of the IDS JMK Anomaly Detection System. 

 
1.3. The genesis of the use of AI in the IDS JMK monitoring system 

Artificial intelligence systems are, in principle, designed for tasks for which it is impossible 

or too difficult to construct an exact analytical description, be it by equation, graph, table 

or otherwise. In particular, tasks with: 

 

- difficult to measure internal parameters (e.g. human brain activity), 

- high number of parameters, the existence of some of them may not be known at 

all (so-called hidden states of the system, see Markov hidden models more 

generally), 

- extensive and usually heterogeneous structure of elements and transitions 

between them (e.g. modelling of social systems including transport systems). 

 

Public transport systems, whether regional or national, always represent by definition a 

finite multigraph with a high number of nodes and edges, generally non-oriented, 

continuous and valued, with non-deterministically defined transitions between nodes 

(externalities). 

 

  

Fig. 2: Oriented, ranked, continuous and finite multigraph with seven nodes (shortest path search 

problem - original Dijkstra's algorithm). 



Page 7 

 

 

 

 

In the specific case of the JMK IDS, the network of lines of the city of Brno is connected 

to the lines of the JMK region comprising almost 11 thousand stops (nodes of the graph), 

in which about 1400 entities, i.e. trains, buses, trolleybuses and trams (nodes of the graph) 

move in peak hours. They further enter this graph cyclically: 

 

- planned timetable adjustments = permanent change to the internal structure of 
the graph, 

- lockouts or mass actions, i.e. reduction/strengthening of lines = temporary 

change of the internal structure of the graph, 

- Difficult to predict system failures, i.e. weather, accidents, congestion, outages, 
etc. 

= an anomaly. 

 
 

From a data processing point of view, this is big data in a dynamic system, all parameters 

of which are not known at the time of control. Therefore, the use of AI for anomaly 

detection over existing traffic system data is proposed as a potentially effective 

indicator of error conditions in traffic monitoring. In general, the implementation of AI 

elements in control systems and data processing has an expected increasing trend since 

the aforementioned breakthrough in 2009. The area of AI applications in transportation 

infrastructure has been extensively covered in the report Artificial Intelligence 

Applications to Critical Transportation Issues (Washington, 2012) [4], whose 

internationally recognized team of authors from the Transportation Research Board 

identified five areas suitable for AI integration. One of the identified areas is the area of 

public transportation, specifically traffic flow planning and optimization, signal timing, 

simulation of systems with human agents, processing of observed data for consistency, 

and others. 

The advantage of the South Moravian Region in terms of the pilot implementation of a 

system using AI in transport infrastructure management is the distinctive university and 

technologically innovative environment in which many established companies, research 

groups and startups are dedicated to research and use of artificial intelligence. 

 
1.4. Sustainability in the context of AI 

Given the high pace and volume of development of AI applications in almost all economic 

sectors, a specific agenda for sustainable AI development has been developed 

simultaneously by several international organisations. A general pillar is "The 2030 Agenda 

for Sustainable Development" [21] (2018, United Nations), focusing on the topics of 

regulation, transparency, ethical standards and environmental impact, or the more 

technical "Sustainable and Smart Mobility Strategy" [5] (2020, Brussels) of the European 

Commission, which is itself part of the better known European Green Deal initiative. This 



Page 8 

 

 

strategy addresses, among other things, the area of Big Data/Data Mining) and AI with 

machine learning as one of the flagships for mobility in the Smart-cities concept. 

From the point of view of sustainability, especially economic sustainability, it can be 

stated with regard to a specific AI project in the IDS JMK monitoring and control system 

that an already designed and implemented AI system usually has lower, but at most the 

same requirements for operation as a system designed using traditional methods. The 

increased input costs for the knowledge and technical equipment required for the design 

of an AI system (e.g. powerful computer stations, renting a supercomputer cloud, 

specialised design of an AI system) are, as with all other automation systems, compensated 

by a combination of subsequently reduced operating costs (e.g. This is due to the increase 

in the level of flexibility of the system given by its intrinsic ability to adapt to changes 

(one-off vs. continuous AI learning, see batch and incremental AI learning in the previous 

subsection). 
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2. EXISTING TRAFFIC MONITORING AND CONTROL SYSTEM IDS JMK 

 
2.1. Public transport in South Moravia 

Public transport in the South Moravian Region is formed by connecting the regional lines 

of the South Moravian Region (buses and trains) with the urban public transport of the city 

of Brno (trams, trolleybuses, buses and boat transport) and together they form the so-

called integrated transport system (IDS), at the same time with a cross-border overlap - 

connection of lines to Slovakia and Austria. Historically, the integration and gradual 

development of the South Moravian Region's transport systems took place between 2004 

and 2010. 

The current public transport of the IDS South Moravian Region can be described by basic 

numerical parameters of the regional and urban network of lines (source: Kordis JMK and 

[22]): 

 

• Stops (nodes): 10826, 

• Lines (edges): 322, 

• Regional buses: approx. 800 vehicles at any one time (peak), 

• Regional trains: about 200 trains at a time (peak), 

• Brno public transport: about 400 vehicles at one moment (rush hour), 

• Population served in the South Moravian Region: approx. 1.3 million from more 
than 700 municipalities, 

• Standardised frequency of service to municipalities in JMK: 6 pairs of 

connections on a working day and 3 pairs on a non-working day, 

• Standardized changeover quality determined by maximum changeover time: 10 

min, 

• Time cycle for sampling the position of vehicles in the JMK region: 6 seconds. 

 
2.1.1. Map display of current public transport in South Moravia 

 
The current state of public transport in the region and the city of Brno can be viewed 

using a dynamic online map with plotted means of transport, publicly accessible via the 

web interface https://mapa.idsjmk.cz. For more detailed statistics on the number of JMK 

IDS lines see Annex 9.3. 

The dynamic map with public transport vehicles is updated every 10 seconds and can be 

used to interactively display selected types of vehicles and monitor their current numbers 

in operation (trams, trolleybuses, public transport buses, regional buses, trains and boats). 

Each type of vehicle has a dedicated graphic symbol (e.g. green triangles with a three-
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digit code = regional buses, coloured triangles with a numerical code up to 12 = trams, 

etc.). 
 

 

Fig. 3: Map base mapy.cz: overview of South Moravian Region - weekday traffic, approx. 900 means (06-
2021). 

 

Fig. 4: Map base mapy.cz: overview of South Moravian Region - weekend traffic, approx. 500 means (06-
2021). 
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Fig. 5: Map base mapy.cz: overview of Brno public transport - weekday transport, approx. 500 means (06-
2021). 

Fig. 6: Map base mapy.cz: overview of Brno public transport - weekend transport, approx. 300 means (06-
2021). 
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In the event of delays of means of transport, detour routes e.g. due to construction works, 

transport restrictions due to cultural or other events or any other event causing anomalies 

compared to the current timetable, this information from the internal IS of the dispatching 

centre is published both in the form of a non-numbered list directly on the tab next to the 

map base and at the same time on the web portal idsjmk.cz according to individual lines, 

see the following pictures. 
 

 

Fig. 7: Information about current changes in traffic on the map base of mapy.cz. 
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Fig. 8: Information on current delays of individual lines of IDS JMK - overview of all lines. 
 

 

Fig. 9: Information about current delays of individual lines of IDS JMK - delays of selected line. 
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2.1.2. Transport performance of IDSJMK 

 
In terms of the number of passengers carried, the so-called transport performance is 

generally monitored in public and private passenger transport. This parameter is given in 

OSKM (passenger-kilometre) units, i.e. the transport of one person over a distance of one 

km. In addition to the time aspect, transport performance in the IDS JMK is monitored 

mainly by individual regions, see the following graph. It can be seen that in addition to 

the increase in total transport capacity due to the connection of new regions during the 

aggregation of the IDS JMK in 2004-2010, there is also a slight increase in total transport 

capacity, especially in the city of Brno and its surroundings. 
 
 

 

Fig. 10: Transport performance in passenger-kilometres by year and region [23]. 

 
 

2.2. Data for traffic control in the JMK IDS 

The basic data bases for the JMK transport management and other analyses including 

anomaly detection are the plan of regional lines of IDS JMK, the network of daily transport 

lines of the city of Brno and timetable data files: 

 

• Plan of the regional lines of the ISJMK :

 https://content.idsjmk.cz/mapa/Plan-site- whole.pdf, see also Annex 9.1 for the 

current status. 

• Network of daily transport lines of the city of Brno: 

https://content.idsjmk.cz/mapa/Plan-site- Brno-den.pdf, see also Annex 9.2. 
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• Timetable data: the GTFS format (General Transit Feed Specification, format 

specification on TransitWiki) and the proprietary format of Kordis a.s. 
 
 

In the dispatching process, the current location of the vehicles (both regional and urban) 

is obtained from the on-board GPS data in the vehicles. From the point of view of data 

processing for anomaly detection, the type of GPS link placed in the vehicle is not 

relevant, because from the control system point of view, each GPS behaves as an identical 

unit due to the uniform interface or wrapper used. 
 

 

Fig. 11: MSP (Mobile Position Monitoring) terminal of a regional bus [22]. 

 

 
As mentioned in the previous text, the refresh rate for detecting the position of an 

individual transport vehicle is 6 seconds. In terms of the accuracy of the vehicle 

positioning, due to the use of links in the civil mode, the accuracy is set between 30 cm 

and 5 m in the case of the use of the US GPS structure, or 1 m in the case of the use of 

the European Galileo system. These limitations have to be taken into account as a 

systematic error of positioning and latency at the input of the data processing system. 
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3. DEFINITION OF THE ANOMALY DETECTION AND LOCALIZATION TASK 
 
An anomaly, or more technically, a statistically significant deviation, is defined in data 

processing as any unusual sequence or pattern in the so-called data corpus. A data corpus 

is a set of data that may have a known or unknown format. The search anomaly may then 

have a known or unknown structure. The two parameters mentioned above then determine 

the four basic types of anomaly detection tasks: 

 

1. Structured anomalies in a known data corpus. 

2. Structured anomalies in an unknown data corpus. 

3. Unstructured anomalies in a known data corpus. 

4. Unstructured anomalies in an unknown data corpus. 

 
 

The role of anomaly detection in the public transport dataset of IDS JMK may correspond 

to the first and third items of the list depending on the type of anomaly searched for. The 

first point corresponds to the situation when known (defined) anomaly structures are 

searched for, here specifically time and position deviations of GPS vehicles in a known 

data corpus format (e.g. the mentioned GTFS). The third point corresponds to the 

situation where any anomalies or generally unknown patterns are searched for in that 

known data corpus without their structure being defined in advance. 

 

The output of the anomaly detection algorithm can take several values depending on the 

presence of the anomaly and whether the detection is correct: 

 

True positive: correctly detected anomaly 

False positive: anomaly detected in error (false alarm) True negative: normal 

value detected correctly 

False negative: a false detection of a normal value (false quiet) 

 
 
For all detection mechanisms, regardless of whether they use traditional data processing 

methods or AI or machine learning methods, reducing the sensitivity of the algorithm can 

reduce the number of false alarms but increase the number of false misses. These two 

values are always correlated within a given algorithm setting (but not necessarily in exact 

proportion). 
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3.1. Anomaly detection from positional data of public transport vehicles 

As mentioned in Chapter 2, in the current state the location of public transport vehicles 

of IDS JMK is monitored using GPS links and in case of deviations from the established 

timetable the calculated delays are publicly displayed numerically in minutes on the web 

portal idsjmk.cz. In practice, the detected delays are the result of a number of different 

influences, e.g. delays in the car itself, accidents, congestion, changes in transport 

organisation, mass sporting or cultural events and other critical or otherwise 

unpredictable situations. 

In addition to displaying the detected anomaly publicly on the website or in the IDS JMK 

passenger application as an emergency event, a second branch should also be considered 

for the needs of traffic management, namely the API area of the IDS JMK control room, 

which will display the detected anomaly and enable the operator to take effective action 

to correct the situation. In this case, it is advisable to attach additional information to 

the detected anomaly to facilitate or increase the effectiveness of the operator's 

intervention in traffic. 

This information, essential for effective operator decision-making, can be extracted from 

the timetable data corpus augmented with the history of public transport operations. It is 

thus possible to distinguish between situations where the detected anomaly is, for 

example, a seasonal issue in an annual, weekly or other cycle or, on the contrary, a 

completely isolated isolated situation to which the dispatching operator has to react 

personally. It is worth mentioning that, in general, even this intervention of the operator 

over the anomaly detection system can be replaced by an expert system, but its efficiency 

is in direct proportion to the volume of accumulated traffic history data and in the case 

of a completely new type of event, the system will not be able to find a solution, or will 

use the standard so-called zero solution for unknown situations. 

In a first approximation, the detected anomaly, i.e. differences between timetable data 

(e.g. from GTFS files) and data from GPS links of public transport vehicles, can be 

classified according to justified generalizability into one of the following categories, 

namely an anomaly valid for: 

 

a) only the specific car of the corresponding line (isolated car problem), 

b) all cars of the corresponding line (isolated line problem), 

c) all cars of the selected lines in the affected area (selective area problem), 

d) all cars of all lines in the area concerned (general problem of the area). 

 
 

Each of these variants can then be further expanded, depending on the time window of 

its validity, into either a one-off or a generally recurring anomaly, either regularly cyclic 

or randomly acyclic. This results in a set of eight basic types of anomalies for which 
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defined or recommended procedures for dealing with the causes can be provided. For a 

more detailed specification of the anomaly detection concept in the IDS JMK, see Chapter 

4. 

 

3.2. Visual analysis of the traffic situation 

Recognition of the cause and type of anomaly can be supported by a superstructure in the 

form of a CCTV surveillance system with manual or automated congestion detection 

directly from traffic images. A sufficiently dense camera network in the area of interest 

is a prerequisite. Benchmarks in the form of datasets containing various annotated traffic 

situations are then used to analyse the behaviour of the traffic situation recognition 

algorithms. Examples include the GRAM Road Traffic Monitoring dataset consisting of three 

types of traffic scenes or the Trafficdb dataset, in which images are divided into Light, 

Medium and Heavy classes according to the current traffic density. 
 

 

Figure 12: Example of the GRAM-RTM dataset for the traffic situation recognition test (sunny, fog, 
intersection). 

 

 
Recognising the general traffic situation from CCTV systems under different weather 

conditions is a technologically and knowledge intensive discipline. One of the congestion 

detection systems from traffic system cameras is [7]. The current traffic density level is 

detected from the image by a combination of the following attributes: 

 

- the total number of vehicles detected in the image, 

- traffic speed (average of detected vehicle speeds), 

- traffic flow (dynamic difference in the number of vehicles entering and leaving 

the image). 
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Fig. 13: Change in traffic volume in a short time [7]. 

 
 

3.2.1. Example of congestion detection in an image using AI 

 
In the task [7], the authors used an AI system based on deep learning to detect traffic 

congestion, specifically testing four different models: a cascade of Haar signs and three 

types of deep learning based detectors (SSD, YOLO and R-CNN). The reported accuracy of 

vehicle detection on GRAM-RTM dataset images is at 80%, which is a good result for a 

general traffic scene. 
 
 

Fig. 14: binary map of detected objects (left) and marking the detection result in the image (right). 

 

 
For further analysis of this type of congestion detection, the following table comparing 

the four models on all three parts of the GRAM-RTM dataset (see above) can be used. For 

each case, the table shows the inference time, i.e. the time required to process one image 

in terms of classification, and the accuracy of determining the total number of detected 

vehicles in the scene. 



Page 20 

 

 

 

 

Table 1: Comparison of Haar, SSD, YOLO and R-CNN models for congestion detection. 
 

 

3.2.2. Example of congestion detection in an image by traditional image processing 
 
An alternative method, until recently prevalent in image processing, is to use one of the 

traditional image processing methods to detect congestion in a traffic scene. For example, 

in the task [8], the authors used image texture analysis, which for a traffic scene with 

sparse traffic is significantly different from a traffic scene containing a high number of 

vehicles. Vehicles are repeated as objects in the image and thus, from the point of view 

of texture analysis, it is a repeated image pattern increasing the value of the extracted 

feature. 
 

 

 

Fig. 15: Statistical analysis of texture in the image with weak (top) and strong (bottom) traffic intensity 
[8]. 
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The most common method of texture analysis is the use of second order GLCM (Gray Level 

Cooccurrence Matrix) statistical analysis. The GLCM is always a square matrix expressing 

the frequency of occurrence of given combinations of pixels (pixels) in an image, thus 

different statistical results can be obtained for images with different traffic intensities. 

The energy and entropy features are extracted from the GLCM matrix values, which are 

used for the subsequent classification of the image in terms of determining the actual 

traffic intensity level. Computationally, an image period of 6 ms was achieved in the tests, 

thus the method is suitable for real-time applications. 

 
3.3. Examples of using AI to detect anomalies in public transport data 

3.3.1. Singapore - travel time by bus 

 
One of the most efficient traffic management systems is being implemented in Singapore, 

also one of the world's most congested cities. The National University of Singapore 

proposed to solve the congestion problem by using an AI-based realistic traffic simulator 

[14]. The data used for the simulation came from the Open Maps Weather API, Google 

Maps and the local Land Transport Authority of Singapore. For each registered congestion, 

geographic coordinates, day of the week, time, current weather, and congestion type 

were recorded (6 types defined in total). Based on these data, an artificial neural network 

(ANN) of the MLP-RL (Multilayer Perceptor - Linear Regression) type was learned, the 

output of which is a prediction (sometimes also an estimation or estimation) of the 

duration of that particular traffic congestion, more specifically the duration of the trip 

between two stops in minutes affected by that particular congestion. For each bus route, 

all congestion estimates along the route are then summed to give an estimate of the 

duration of the journey along the entire length of the route. 
 

 

Figure 16: Bus travel time actual (blue), predicted by the simulator (red) and predicted by the 

transport authority (yellow). 
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From the above graph for 30 random samples (traffic situations), it can be seen that the 

ANN model prediction better matches the actual bus journey time than the manual 

estimation of the transport authority based on experience. Numerically, the increase in 

the accuracy of the trip duration prediction was quantified at 13%. 

 
3.3.2. Mumbai - travel time by car 

 
At BRAC University in Bangladesh, similar to the previous case, research was conducted to 

estimate the travel time, but here for a passenger car [15]. The data for training five 

different AI models (namely: decision tree, random forest, support vectors, linear and 

logistic regression) were obtained from Uber Movement service which divided the city into 

nodes. An important effect of this study is the confirmation of the non-negligible effect 

of weather, and given the research location, the season (monsoon), on the prediction of 

trip duration. 

 

Table 2: Comparison of the accuracy of the selected AI models on the travel time estimation task. 
 

 

 
The weather data was streamed from the commercial Wunderground Weather service in 

real time, but was not used as another input for training the models, but as a comparator 

to determine the correlation between weather type and travel time between city nodes. 

The weather parameters observed included temperature, humidity, pressure, 

precipitation, and others, but only the latter was observed to have a statistically 

significant correlation, namely a 12.6% increase in car travel time between city nodes for 

every 2.5 cm of precipitation observed. 



Page 23 

 

 

 

 

3.3.3. Beijing - Passenger Forecast 

 
A system for estimating the number of passengers at public transport stops has been 

developed at Beijing Jiaotong University in Beijing [16]. Here, the AI model is a three-

layer ANN, whose inputs are the number of passengers, at a given time of day and day of 

the week, obtained through an electronic gate at each analyzed stop. The prediction is 

then made for day n+1 based on the data of the previous n days. 

 

Table 3: Actual (left) and predicted (right) passenger counts for two selected stops of Beijing 

GUOMAO Station and ANHEQIAO Station in 2018. 

 

 
The training phase used data collected from the electronic gates between 3 September and 

13 December 2018. That ANN model exhibited an error in passenger count determination 

of less than 0.1% after 70 iterations (note: an iteration is a volume unit of learning for an 

AI model, similar to how a lesson is a unit of learning time in school). In this way, the 

model was built for 391 different stops and stations of Beijing city. 

 
3.3.4. Stockholm - collective delay detection 

 

The paper [17] deals with the detection of anomalies in the form of unexpected traffic 

congestion observed on Keolis city buses in Stockholm. Using GPS links, the location and 

departure and arrival times at bus stops are known for each bus, from which the average 

speeds of the bus line in different sections of the route and also the number of passengers 

from the time spent at the bus stop are expertly estimated. 

The main added value of the work is the focus on so-called collective delays, i.e. the 

systematic delay of several units, here buses, in succession rather than the isolated delay 

of one 
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of the bus. This tests the hypothesis whether congestion caused by specific events such as 

roadworks, sporting events or concerts etc. can be distinguished by machine learning tools 

from regularly occurring types of congestion caused by e.g. seasons or other cyclical 

influences. The AI model used here is the so-called LSTM (Long short-term memory 

network), which is a very specific (in the sense of less common or unusual) type of 

recurrent artificial neural network. The model is used to predict a time series, which is 

then compared with the moving median of the actual delay values of public transport 

vehicles obtained from their GPS links, and then based on one of the three rules introduced 

in the paper, a collective anomaly is indicated or not. 

 
3.3.5. Shanghai - taxi driving anomalies by 

 

The subject of a rather unconventional work [18] is an objective assessment of the 

anomaly of a taxi ride after a customer complaint (long duration of the ride, high price, 

etc.). Taxi drivers are often penalized by the operator for customer complaints, and 

usually the reasons for longer journey times, higher fares due to variable traffic conditions 

or unexpected circumstances are not objectively and ad-hoc assessed. The aim of the 

solution is to detect real traffic difficulties and thus distinguish between forced anomalous 

taxi behaviour and deliberately anomalous driving in order to deceive the customer. The 

proposed methodology was tested on a database of 30 million taxi ride records in Shanghai 

city over a six-month interval. 

This system uses a statistical model with defined limits for anomaly inndication. The 

algorithm of the proposed model evaluates the following defined problem: for a trip from 

the origin destination A to the destination B, find the probability of choosing route T from 

the available set of all known routes based on the distribution of time and routes of taxi 

trips. Given the statistical constraints, decide whether the current trip T is anomalous 

(out of bounds) and if so, whether it is anomalous by force or by design. A forced 

anomalous taxi ride is one that follows a route with a high probability of selection, even 

if it took longer and was calculated at a higher rate because of the current worsened 

traffic situation. Conversely, trips along routes with a low probability of collection and 

comparable or even higher duration and rate calculation are identified as deliberately 

anomalous. 

 
3.3.6. Nashville - traffic anomalies at sporting events 

 
One of the more recent state-of-the-art methods using the AI model DxNAT in the form of 

a deep neural network is presented in [19]. Its purpose is to identify non-recurring traffic 

congestion and also explains its cause. 

This method first converts road traffic data into so-called TCI images (Traffic Condition 

Images), which represent a projection of traffic data onto a geographical map (e.g. vehicle 

speed on individual road sections). In the next step, a so-called data augmentation 

(artificial augmentation) and subsequent classification of the current TCI image by a 
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convolutional neural network (CNN). Without the aforementioned data augmentation, only 

1440 real TCI images would have been used in one day, a value insufficient for training a 

deep learning model. 

The authors of the paper conducted an experiment involving the detection of traffic 

anomalies caused by football games and traffic accidents in the city of Nashville. For the 

test verifying the effect of football matches, traffic data for five days without a match 

being held in the city and two days when a match was held instead, i.e., the expected 

proportion of a representative dataset, was used as the training dataset. This resulted in 

high accuracy in detecting unusual traffic situations correlated in time and location with 

the events hosted (see also the following Chapter 4 for more information about the 

project). 

 
3.3.7. Shanghai - predicting bus arrival with a collaborative model 

 
In order to improve the accuracy of a real-time public transport information system, 

specifically the prediction of public transport bus arrival, a collaborative model based on 

cyber-physical systems architecture is proposed in [20]. The data sources in this model 

are historical data, i.e., records of previous bus trips, as well as static data such as route 

segment lengths, intersection traffic light cycles, etc.) and other real-time data from on-

board devices. Prediction is performed by fusing all these data sources. A bus line in 

downtown Shanghai with suitable parameters (route length, number of stops, expected 

congestion) was selected to verify the method. The results of this work predictably show 

a synergistic effect, i.e., the above collaborative model achieves higher accuracy than the 

competing methods presented in the introductory part of the paper [20]. 
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4. CONCEPT OF ANOMALY DETECTION SYSTEM IN IDS JMK 
 
A central feature of public transport throughout its existence anywhere is the general 

increase in the demands on transport in all basic areas: the amount of passengers and 

freight transported, the safety of transport, the speed and comfort of transport, the 

impact on the environment (CO2 emissions, noise, energy consumption), etc. The increase 

in demands on passenger and freight transport is directly implied by demographic 

development, the economic development of society and the globalisation of production 

and services. In terms of public passenger transport, research on the use of AI in passenger 

and freight transport is mainly motivated by addressing the defined areas [3]: 

 

• Traffic control. 

• Transport safety. 

• Public transport. 

• Urban mobility. 

 
 
The main task of this study is to identify possible technological solutions in the field of 

public transport in the IDS JMK using AI, while it is obvious that always the other areas 

defined in [3] will be synergistically affected. 

 
4.1. Delays of public transport vehicles compared to the timetable 

For the purposes of this study, the general concept of delays of IDS JMK vehicles compared 

to the timetable should be divided into two parts, namely the detection of delays of a 

specific vehicle (sensory part) and the processing and use of the obtained information 

about the delay, i.e. the publication of information about the delay, or action intervention 

in the transport system to correct the consequences of the situation. 

The detection of the delay (and theoretically also the advance) of a specific IDS vehicle 

against the timetable can always be implemented only under the condition of real-time 

detection of the position of the specified vehicle. In general, the position of a specific car 

can be determined in two ways: 

 

- external detection (camera, inductive loops, RFID/NFC or other sensor detector), 

- internal sensor (global positioning system, local link). 

 
 

The advantage of external vehicle position detection is the independence of the vehicle 

function, e.g. in case of a crash, and the amount of extractable information from a single 
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detector used across the board for all vehicles passing through the detector installation 

site. The disadvantage of external detection is usually a stationary network of detectors 

with the need for its own infrastructure (portal, power supply, data transmission). 

External detection is suitable for a high ratio of the number of network nodes (here the 

number of cars) to the number of network nodes (here the stops). 

An example of visual detection is a camera system for recognizing the line markings of a 

public transport vehicle [6]. The visual detection method is based on the assumption of 

the typical characteristics of the identification LCD/LED panels of public transport 

vehicles, in particular the unique geometric distribution and the set of colors that can be 

segmented from the rest of the image, e.g., in the HSV color space. Subsequently, the 

OCR/OCR algorithm can be used to identify the line number and the destination 

stop/station. The selection of the image parts geometrically corresponding to the 

identification panel model can be performed e.g. by a cascade of Haar filters. For the 

purpose of analysis and implementation of OCR/OCV algorithms using machine learning, a 

number of datasets exist, e.g. the well-known MNIST (handwritten numbers), SVHN 

(Street-View House Numbers), and the so-called COCO-Text dataset containing images of 

a general outdoor scene relevant to the case of this study. A visual detection system is 

generally more complex and infrastructure intensive than simple sensor systems, but 

consequently provides a significantly higher amount of usable traffic information. 
 

 

Fig. 17: Example of line number and destination station segmentation using colour space transformation 

- external vehicle position detection. 

 

 
The second way to detect the current position of the vehicle is by using an internal sensor 

installed directly in the vehicle. Due to the mobility of the vehicle, it is obvious that the 

technology must satisfy the self-localization condition (absolute or relative), regardless of 

the physical principle used. This could be, for example, satellite navigation modules 

(Galileo, GPS and other localisation systems) as they are currently used for manual 

monitoring of public transport vehicles of the IDS JMK. 
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This method of detection generally appears to be the most effective, both in terms of the 

available technologies, their parameters, and the complexity of developing the system 

implementation and subsequent service costs for its operation. As will be seen in the 

following chapters, this method of locating public transport vehicles is significantly 

dominant in the applications known to date. 

 
4.2. The concept of anomaly detection in the JMK IDS using GPS 

As mentioned in the previous chapters, the JMK IDS vehicles are equipped with GSP links 

to detect their current position in an interval of about 6 seconds. For the pilot 

implementation of the system of automatic detection of anomalies in traffic, it is thus 

proposed to use these links as a basic source of positional information about the vehicles 

without the need to fundamentally modify or transform the infrastructure of the IDS JMK. 

Irrespective of the specific AI architecture subsequently used, the implementation of an 

anomaly detection system in public transport can be divided into two parts in accordance 

with the theoretical introduction in the first chapter of this study. The first part 

corresponds to the learning phase and its task is to set the AI model (e.g., neural network, 

decision tree, etc.) to a working point by means of a series of high number of traffic 

examples, both normal smooth traffic and congestion examples of different causes. 

Schematically, the learning phase can be illustrated by the following graphic, in which the 

values of 𝑌 and 𝑌" correspond to the correct value determined by the operator (or 

otherwise by the inputs) or the predicted value, respectively. The value herein may be 

understood to be either just binary information as to whether or not there is congestion, 

or a multi-valued or even numeric characteristic indicating the category or severity of the 

congestion. 
 

 

Fig. 18: Conceptual block diagram of anomaly detection using AI incremental learning architecture 

with teacher-learning phase. 
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This first, learning phase can take place either in parallel with the operation, from which 

the input data will only be drawn, but the result of the classification (the so-called 

prediction) will not enter the public transport control system IDS JMK, or it can take place 

completely offline on a previously acquired dataset. In the second phase, the so-called 

classification phase, the output of the learned and verified model is already connected to 

the IDS JMK, see the following diagram. 
 

 

Fig. 19: Conceptual block diagram of anomaly detection using AI architecture of incremental learning 

with a tutor - classification phase with the possibility of correcting the result (called 

incremental learning). 

 

 
The method of connection of the anomaly detector result to the IDS JMK can be selected 

according to the needs, from its publication only at the operator's workplace for further 

processing, through automatic display of the result on the public website idsjmk.cz to a 

fully automated variant with a feedback loop to the IDS JMK control system for real-time 

congestion compensation, etc. Due to the assumed need to introduce into the prediction 

system correction information from the operator, which cannot be easily or only with 

difficulty included in the timetable files, there is also a possibility of immediate correction 

of the result in the classification phase, with the fact that this correction is also reflected 

in the previously built model with a certain weight. This feature makes it possible to 

reduce, for example, the number of repeated congestions of known non-critical cause 

without the operator having to manually confirm each one. 

Several related research works in the field of AI in transport systems, especially from 

recent years, can be a guide for the implementation of an anomaly detection system in 

the IDS JMK, regardless of its complexity. Mention can be made of the work [24] from late 

2020, in which the authors proposed a system using deep learning architectures (the field 

of machine learning within AI) that classifies bus trajectories obtained by measuring their 

GPS coordinates based on the probability of matching (similarity) of the measured 

trajectory with the trajectory of the planned route of the line. The input GPS data (see 

the following figure) of the route are merged after preprocessing and form the input of 

the classification algorithm STOD (Spatial-Temporal Outlier Detector), whose numerical 

output is the mentioned probability and this, as also implied by the name of the 

classification algorithm, by using both positional and temporal GPS data of the bus. 
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Fig. 20: Process of determining the deviation score of the actual and planned bus route according to [24]. 

 

 
Specifically, the classifier proposed in this paper, using, among others, neural network 

architecture, determines the so-called anomaly score, whose higher value at the output 

of the classifier indicates a deviation of the bus trajectory from the expected route, taking 

into account noise in the data or measurement uncertainty. The higher the value of the 

anomaly score, the more the measured trajectory deviates from the planned trajectory. 

The model is being tested in Recife, Brazil (82 bus routes) and Dublin, Ireland (66 bus 

routes) for real-time detection of anomalies caused by congestion and detours, which bus 

drivers choose independently or on the basis of dispatchers' instructions based on current 

traffic information. The system uses the aforementioned GTFS timetable format together 

with additional supplementary data from OpenStreetMap and open city data as part of the 

ground-truth to build the input dataset. 
 

 

Figure 21: Example of a spatial anomaly (Dublin, Ireland): measured bus trajectory (left), planned route 

(right) [24]. 
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Fig. 22: Example of a time anomaly (Dublin, Ireland): measured bus trajectory (left), planned route 

(right) [24] - the discrepancy between the measured and planned route timings can be traced from the 

density of the displayed points, which represent GPS data acquired at equidistant time instants at 30 s 

intervals. 

 

 
In [25], in addition to the theory of data management of public transport, contextual 

prediction mechanisms for short and long term delays in the transit network and 

optimization algorithms for schedules according to seasonal effects, the approach of using 

deep neural networks, as a representative of one category of AI methods, for contextual 

detection of anomalies in the transit network is also developed. A detailed description of 

the implementation of the method is far beyond the capacity and knowledge requirements 

of this paper, so only the basic parameters are summarized here: 

 

- common types of causes of congestion are considered: accidents, sporting, 

cultural and other events, adverse weather, closures, etc, 

- The dataset contains over 900 million records and was collected over a period of 

more than a year in the city of Nashville (a comparable agglomeration to the 

JMK), 

- A multi-layer DNN (deep neural network) is used as a classifier model to search 

for congestion patterns, 

- 98.73% accuracy was achieved in identifying congestion caused by football games 

with a stadium capacity of 70,000 people. 

 

Note: the accuracy, called Accuracy, is defined in AI as the ratio of correctly classified 

positive and negative cases to all cases. So the number given means that 1.27% of all cases 

were misclassified as either a false alarm or a false calm. 
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Fig. 23: Block diagram of anomaly detection using DNN according to [25]. 

 

 
The implementation of the method was verified and the stated accuracy obtained in the 

so-called motivational example of eight football games at Nissan Stadium at the turn of 

2016 and 2017. The basic parameters and the impact of hosting the games on the traffic 

around the stadium can be illustrated by the following graphic. 
 

 

 

Fig. 24: Tabular breakdown of football games with visitor numbers and duration (top right two columns) and 

corresponding traffic density around the stadium of four hours (a), three hours (b), two hours (c) and one 

hour 

(a) before the start of the game [25]. 
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There are many similar works within the research of data analytics of public transport 

control systems using modern tools using AI, Data mining or Big data knowledge, but they 

are usually not yet implemented in the transport system (more precisely, these 

implementations are not yet widely published). 

 
4.2.1. Timetables in GTFS 

 
Regardless of the specific GTFS format, this and any other ground-truth for detecting 

anomalies in public transport in the IDS JMK or elsewhere. It is a basic data set against 

which the measured actual traffic data is compared and based on the detected deviations 

it is decided what type or intensity of deviation caused by congestion or other traffic event 

is involved. 

GTFS (The General Transit Feed Specification) defines a general format for public 

transport timetables and associated geographical information. The GTFS format allows 

public transport operators to publish transit data in a unified format that enables the 

development of other transport applications by third parties, such as online route 

planners, in addition to the implementation of their own management systems. The GTFS 

specification has a fixed structure and way of working with the information, which is 

stored in uniquely defined files divided according to the type of information represented 

as follows: 
 
 
 

 

 
Some of the data files listed above are mandatory, i.e. required for the correct functioning 

of transit applications (e.g. stops, routes, trips, etc., containing basic definitions 
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lines, times, etc.), while other data files are optional (e.g. fare_attributes, transfers, 

levels, etc.) and are used for superstructure services. Here, e.g., for fare calculation, 

transfer planning at transport nodes, and information about floor changes at stations. See 

also Annex 9.5 for a tabulated list of data sets with a more detailed description. 

The data in the individual files are interlinked, in particular the files stops.txt, routes.txt 

and trips.txt have direct bilateral links between them. A specific example of the content 

of some selected GTFS files illustrates well the philosophy of storing traffic data, which 

was originally inspired by the general comma-separated value format (the well-known CSV 

format). 

 

agency.txt 
 

 

 

stops.txt 
 

 

 

routes.txt 
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trips.txt 
 

 

 

stop_times.txt 
 

 

 

levels.txt 
 

 

 

From the above examples of GTFS files, it can be easily observed that e.g. only from the 

files stops.txt and stop_times.txt it is possible to detect a possible deviation of the current 

state of the corresponding vehicle from the timetable by simple differentiation against 

the data from GPS links (latitude, longitude, time). The GTFS data files, together with 

other necessary data, can serve as the dataset mentioned in the introduction for anomaly 

detection using AI architecture, e.g. decision tree, Bayesian classifier or neural network. 

 
4.2.2. Primary anomaly detection 

 
From a practical point of view, it is always necessary to have a pair of values to build an 

anomaly detection algorithm - the actual value (the ground-truth - here the timetable, 

specifically e.g. the time data) and the predicted or measured value (here e.g. the GPS 

data of the car). For the task 
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detection of anomalies in public transport of IDS JMK let us consider in the framework of 

the system implementation a standard task of the type of learning with a teacher, i.e. to 

the mentioned pair of values also available information whether it is a case of anomaly or 

not. This information can be either binary, i.e. only yes-no, or qualitatively and 

quantitatively scalable according to the severity of the anomaly. Primary anomaly 

detection then consists of a time-limited learning phase, which was mentioned in the 

introductory chapter of the study, and a subsequent classification phase, where the 

detection system no longer needs operator intervention. The deviations of the currently 

measured traffic values from the valid timetable are evaluated in the familiar way learned 

in the previous phase. The length of the learning phase always depends on the number of 

learning examples in it. 

 
4.2.3. Adaptive adaptation of anomaly detection to traffic changes 

 

Due to the complexity of the learning phase in terms of the number of representative 

cases of all anomaly categories (congestion, concert, accident, vehicle failure, traffic 

volume, etc.) and also e.g. the need to capture seasonal cyclic anomalies with a yearly 

period (e.g. systematic delay of trainsets due to winter weather conditions in a certain 

area), it is appropriate to allow further adaptive adaptation of the already learned system 

to further changes after a limited learning phase for the primary anomaly detection. This 

"lifelong" biological process, common to humans, is called incremental learning in the case 

of machine learning, which has its own not entirely intuitive implications and places 

specific requirements on the AI architecture. In principle, however, incremental learning 

can achieve corrections and modifications to a system already learned by an operator and 

thus, for example, correct for seasonal effects over a longer period of time than just one 

year. As a result, it is possible to achieve a system capable of extracting intrinsic (not 

easily observable from the outside) properties of traffic flows and thus classifying 

detected anomalies both automatically and often in a much more efficient way 

compared to human operators. This result is due, besides the extracted intrinsic 

knowledge of the system itself, also to the amount of data processed simultaneously in 

this way. 

 
4.3. Examples of anomaly detection in transport - overview 

In this chapter, examples of selected systems for anomaly detection in urban 

agglomerations of different types given by the geographical location and size of the area 

managed by public transport are presented.  It is important to note here that at present 

(2021), the collection of traffic information is mainly automated in traffic management 

systems, either by external monitoring systems (usually cameras) or on-board sensors, 

while the actual evaluation of the information obtained is usually performed manually or 

semi-autonomously, i.e. manually on the basis of autonomously statistically pre-processed 

data (aggregation, statistical indicators for dispatching operators, etc.).  The analysis of 
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AI approaches in the field of public transport presented in the previous chapters thus 

implies to some extent, in the case of system implementation, also research activities, 

apart from development. 

 

4.3.1. Congestion detection using taxi vehicles with GPS 
 
For fast and efficient congestion detection in the Beijing metropolitan area, the authors 

of the system described in [9] used the current network of taxi vehicles, which are natively 

equipped with GPS locators. The traffic map of the city displayed on the geographic 

background is divided into a uniform rectangular grid of square segments. Each segment 

represents a further indivisible entity for congestion detection in which data from all GPS 

locators of taxi vehicles within that segment are aggregated. 
 

 

Fig. 25: Traffic map of Beijing city (left) and the division into sectors for congestion indication (right) 
[9]. 

 

 
A model has been developed for standard traffic behaviour, from which deviations are 

then statistically evaluated. The model is built on traffic flows characteristic of the 

segments at a given time, i.e. reflecting the movement of people to and from work at a 

given time of day, increased or decreased traffic flows to the airport at times of aircraft 

arrivals and departures, the same for train services, etc. Taxi vehicles, in terms of their 

number and the size of the area served, are a reliable indicator correlating with actual 

traffic volumes. 

Without prejudice to the accuracy and completeness of the study, it can only be briefly 

mentioned here that the automatic identification of cells with a statistically significant 

deviation from the standard (Expectancy = mean value in statistics) traffic is performed 

in real time with the LRT (Likelihood Ratio Test) over an aggregated map of segments with 

a known number of currently present GPS links. 

 
4.3.2. Classification of anomalies in the City of Boston traffic dataset 

 
As part of university research at Boston University, a method for classifying anomalies in 
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traffic data was proposed by a pair of authors in [10]. The goal of real-time detection of 

emerging traffic congestion is early operator (here manual) intervention to mitigate or 

completely compensating for the extent of congestion. The basic architecture of an 

anomaly detection system can be illustrated by the following diagram. 
 
 
 

Fig. 26: Architecture of the traffic anomaly detection system of the city of Boston [10]. 

 

 
The input dataset for the research was provided by the City of Boston in the form of a list 

of all recorded congestion from 2014 to 2016. The detected congestion is divided into its 

categories in the dataset: 

 

- regular (expected) congestion appropriate to the location and time of day, 

- anomalous congestion caused by traffic accidents, reconstructions and other 

influences. 

 

At the same time, each record corresponding to a single congestion contains ordered 

information according to the specification: 

- time stamp, 

- Record ID / congestion, 

- geographical coordinates, 

- other traffic congestion parameters (extent, duration, etc.). 

 
 

Based on these input dataset data, the following four parameters (reduction of the feature 

space, i.e., the amount of data extraction relevant) are calculated for each record: 
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- average latitude (lat), 

- mean longitude (long), 

- congestion orientation, i.e. the angle relative to the positive part of the 
horizontal axis of the map (), 

- congestion length (l). 
 

 

Figure 27: Illustration of extracted features (coordinates, orientation and length) for classification of 

the degree of anomaly of the detected congestion. 

 

 
The classification of congestion based on the four extracted features takes into account 

both the standard model of the ideal traffic situation and the regular (expected) 

deviations in normal traffic. The expected deviations are mainly caused by the periodicity 

of the seasons (different traffic behaviour in winter and summer, holidays, etc.), the 

weekly working cycle (weekdays, weekend, holidays) and the daily intervals (e.g. morning 

and afternoon peak hours). For each such period, a model of expected traffic behaviour 

is then created, against which the new traffic data is then compared using the clustering 

methods DP-means and DB-scan and finally classified according to the distance in 4D space 

from known clusters representing known congestion or a standard traffic behaviour model. 

An example of the evaluation of several new situations is given in the following summary 

table. 
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Table 4: Table of symptoms (first four columns) and corresponding congestion classification (last column). 
 

 

 
The value of the classification parameter in the last column (passociation) indicates the 

probability with which the congestion corresponds to a known model of the usual traffic 

situation. Thus, a high value indicates congestion that is known and therefore expected 

at a given location and time of day, and conversely, a low value of passociation indicates an 

anomaly relative to both normal standard traffic and an anomaly relative to expected 

deviations at a given time of day at a given location. 

 
4.3.3. Anomaly detection from GPS data of public transport buses 

 
Systems based on tracking the GPS position of taxi vehicle locators are popular and 

therefore common in the development of anomaly detection systems. Nevertheless, 

anomaly detection solutions based on similar processing of the same GPS link information, 

but from public transport vehicles, are emerging as a more suitable solution for traffic 

management by urban enterprises. This compensates for some influences such as the route 

preference of taxi drivers and the systematic offset given by the target group of taxi users. 

An example of a proposed method using deep learning architectures can be found in [11] 

(Australia/China - city of Kuej- yang, approx. 5 million inhabitants in a mass transit 

metropolitan area). 
 
 

Figure 28: The process of traffic anomaly detection using deep learning [11]. 
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The scope of the study does not allow for a detailed description of the principle of deep 

learning architectures, therefore it will be limited here to stating that it is a 

computational model whose input is raw ranked data of a traffic situation and its output 

is extracted features relevant for the recognition of the type of traffic situation. It should 

be emphasised that the classification capability of the model is dependent on the accuracy 

of its setup in the learning phase (see introductory chapter). The previous figure shows 

schematically the anomaly detection process according to [11]. The computational block 

of deep learning, which is a key component of the system, is represented in the diagram 

by a network of links connecting the nodes of the network (note: technically correct here 

is an artificial neural network with neurons arranged in layers from input to output). 

In the case of deep learning architectures, knowledge about congestion is encoded in the 

internal weights of the network. The advantage of these approaches is their applicability 

even for non-explicitly defined tasks. A related disadvantage is the lack of the ability to 

extract relevant congestion knowledge from input data, in other words, it is not easy to 

trace on the basis of which procedure a given input data was classified into a given class 

(e.g., congestion of a certain type and intensity). 
 
 
 
 

Fig. 29: Plots of two selected attributes (NCT and s) for the three studied bus routes 66, 50 and 18 - the 

individual colored points correspond to the observed public transport vehicles (red points to the training 

data, blue points to the test data) - the anomalies can be traced as points distant from the clusters. 

 

 
The format of the resulting classification of detected anomalies into two defined classes 

A and B can be shown in the following table. Each detected public transport bus anomaly 

is assigned an identifier, a time stamp and a classification of the event and its placement 

in one of the two classes. 
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Table 5: Output of the anomaly classifier for bus lines in the Chinese city of Kuejyang. 
 

 

 
In the previous table, the anomaly classes are defined according to the degree of deviation 

in the spatial and temporal domain (corresponding to the two selected NCT and s symptoms 

in the graphs above), with class B being a less severe anomaly than class A, which 

corresponds to the anomaly of the observed car in terms of both spatial and temporal 

symptoms. Simply put, the observed public transport car classified in class A is off-route 

(detour, reconstruction, accident) and moreover at the wrong time (delays e.g. passenger 

boarding, etc.). 

 
4.3.4. Estimation of tram delays in the Warsaw transport system 

 
In a 2017 paper [12], authors from Warsaw University of Technology focused on real-time 

estimation of tram delays from freely available data from the Warsaw Transport Authority. 

The data is open as a streaming stream through a web interface with the address 

https://api.um.warszawa.pl. It contains information on current tram locations and 

timetables and is also used by freely available route planners such as Google Directions 

for adaptive route planning based on the current traffic situation (so-called situation-

aware routing). 

Based on the available data, the authors proposed a method to calculate the current delay 

estimate for each single tram car. This data is then also used to calculate a global indicator 

of the level of traffic intensity at a given location - essentially a generated heat-map 
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indicating the current traffic density. The architecture of the tram delay estimation 

system itself is illustrated by the following diagram. 
 
 

Fig. 30: Architecture of the system for estimating tram line delays in the city of Warsaw [12]. 

 

 
The system analyses the available traffic data for a total of 750 trams, which are updated 

in a 10-second cycle and represent a data flow of approximately 72 MB/hour. The 

estimated aggregated delay at a given map location is displayed by the system in real time 

and the following graphic shows, among other things, that increasing traffic volume can 

be effectively estimated in units of hours. 
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Fig. 31: Detection moment of the excess traffic volume level in the city centre of Warsaw at 16:57 

(left) and the absolute peak level (peak-point) in the same area at 17:57 (right). 

 

 
The estimation of the actual delay of individual tram cars is itself made by a non-trivial 

calculation. This involves both a comparison of the timetable of a given stop with the 

actual time of the tram car according to the on-board GPS data (this delay is important 

especially for passengers at subsequent stops) and an estimation of the actual delay 

between neighbouring stops (this delay is important especially for the estimation of traffic 

density for route planners, as it takes into account e.g. traffic preference by switching 

traffic lights etc.). The result of the detected delays is aggregated for all trams and 

graphically displayed in a geographical map of the city, where each tram has its own line 

number. 
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Fig. 32: Display of current delays of individual tram cars - numbers indicate the line, colour indicates the 

type of delay (blue = advance > 1 min., green = according to order, orange = delay > 3 min.). 

 

 
Using data from February and March 2017, the results of the first experiment were 

evaluated in terms of analyzing the delay rate and the number of delayed tram cars. The 

published results of the analysis are shown in the following two aggregated graphs, broken 

down by day of the week and time of day. 
 

 

Fig. 33: Proportions of trams with average (dark bars) and significantly high (light bars) delays 

compared to the timetable, shown in a day-of-week (left) and time-of-day (right) breakdown. 
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4.4. Smart-city transport systems - an overview 

In this chapter, for the completeness of the material of the technical part of the study, 

other relevant transport systems using modern technologies with a focus on artificial 

intelligence are listed, which can be used to determine especially the long-term plan for 

the development of the transport infrastructure of the IDS JMK and to a lesser extent also 

for the design of the current system for anomaly detection in terms of modularity and 

compatibility with future development. AI is used in many cities for a variety of transport-

related applications, see for example [13] for an introduction, ranging from the monitoring 

of vehicle status, through the management of variable traffic infrastructure (traffic lights, 

tunnels, detour routes), estimating cyclist and pedestrian behaviour to fully autonomous 

public transport systems based on self-driving vehicles as part of the general Smart-city 

concept. 

 
4.4.1. Autonomousbuses 

 

Autonomous buses, i.e. self-driving cars without a driver or other, albeit remote, human 

operator, were originally introduced after the turn of the millennium in confined areas 

such as airports or large manufacturing plants. They are now also being introduced into 

mainstream public transport, particularly in China, Singapore and Finland. 

Olli is the first autonomous bus to be implemented in a smart city infrastructure. It was 

introduced by Local Motors from the USA in 2016 and is currently being used in a number 

of locations for regular and conference or tourist transport (Chicago, Turin, Berlin, 

Yellowstone National Park). The production of the bus is largely based on 3D printing, and 

AI is used not only to monitor the surroundings and drive the car, but also to communicate 

with passengers about, for example, weather and tourist attractions. 
 
 

Fig. 34: Olli autonomous bus equipped with artificial intelligence for driving. 
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Scania and Nobina is a combination of a truck and bus manufacturer and a public transport 

operator in the Nordic countries, who have launched a trial run of autonomous buses on 

regular routes in the Stockholm area in 2019. Two Scania Citywide LF electric buses 

connect the new residential area of Barkarby, which is approximately 20 kilometres from 

central Stockholm, with a nearby metro station. The buses are operating on a new special 

route with a length of 5 kilometres and four stops. It should be noted that Barkarby's public 

transport system has been described at expert level as the most modern in the world. 
 

 

Fig. 35: ScaniaNobina autonomous bus equipped with AI for driving in the Barkarby area. 

 

 
Bus parameters: 

Model: Scania Citywide LF (low-floor) 

Vehicle length: 12 m 

Drive: Electric 

Charging technology: Depot charging 

Carrying capacity: 80 passengers, of which 25 seats 

 
4.4.2. Traffic management systems with AI 

 

Surtrac is an intelligent traffic light control system from Rapid Flow Technologies that 

was initially installed in the City of Pittsburgh and then expanded to other cities. Surtrac's 

functionality is based on visual recognition of the current traffic situation, i.e., detecting 

vehicle, pedestrian and cyclist movements. Based on real-time detections, Surtrac creates 

a model of the current traffic and tracks where individual vehicles are heading. It then 

plans the efficient passage of vehicles through the intersection just by controlling the 

timing of traffic lights and the coordination of traffic 
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flows between adjacent junctions. Testing of the Surtrac system in Pittsburgh has reduced 

total time spent in traffic by 25% and time spent waiting at green lights by 40%. Other 

announced improvements to the Surtrac system are also to use synchronization with 

vehicle navigation systems (Waze, Google Directions) to plan traffic flows based on vehicle 

destinations. 
 
 

Fig. 36: Surtrac's technical means for AI-assisted traffic management. 

 

 
Siemens Mobility is a well-known term for the monitoring system originally implemented 

in the city of Bengalur, India, which adjusts the timing of traffic lights according to the 

detection of the current traffic density. 

 

City Brain is an Alibaba Cloud project introduced in 2017. Like the previous systems 

mentioned, it optimises traffic flows by controlling traffic lights using data from CCTV 

cameras. In 2019, 23 cities have already used this system. A pilot implementation of the 

comprehensive system was carried out in the Chinese city of Hangzhou (approx. 2 million 

inhabitants) with the following results: 

 

- traffic time on the 22 km long motorway section around the city was reduced by 

an average of 4.6 minutes, 

- it takes an average of 2.6 seconds to pay for parking, 
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- the arrival time of the emergency services at the accident scene was reduced by 
7 min. on average. 

 
 
Seoul is the capital of South Korea with a population of about 10 million, where AI in the 

form of Big Data was used in 2014 to analyse and design night bus routes (night-owls). The 

location of residents provided by the mobile operator and the destination of taxi vehicles 

during the desired night hours (midnight to 5 a.m.) were used to design the bus routes. 

Data collection was carried out over a period of one month. In the first phase, the route 

scheme was designed in a conventional planning manner based on available public 

transport information. In the second phase, a geographic visualization of the population 

density at a given nighttime hour was created based on mobile operator data and taxi 

data, and the design of the routes was optimized. The resulting design was positively 

evaluated by Seoul residents who previously lacked night bus routes. 
 

 

Fig. 37: Design of night lines in Seoul. 

 

 
As a highly urbanised city-state with the third highest population density in the world (over 

7,000 inhabitants per km²), Singapore has been engaged in AI-based traffic management 

since 1998. In that year, Singapore introduced Electronic Road Pricing (ERP Singapore) for 

all types of road vehicles, which eliminates the need for vehicles to stop at toll gates or 

slow down at checkpoints when paying road tolls. The system uses a network of sensors 

and CCTV cameras to monitor traffic on the road as well as extract vehicle registration 

plates. Each vehicle is equipped with a so-called In-vehicle Unit unit used for immediate 

payment of tolls. An upgraded version is the Next Generation ERP Singapore, in which all 

vehicles are equipped with GPS locators whose data (location, speed, time) is collected 

by internal systems. Thus, in real time, the control system will notify the vehicle driver 

of information about an impending congestion or other road closure and suggest an 

alternative route. At the same time, the NG ERP Singapore system is used for parking 

payments, with charges aggregated automatically according to GPS data. The City of 

Singapore currently 
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Strobo's autonomous buses are currently being tested and are scheduled to go live in 2022. 

In terms of an example, it is worth noting that the city-state of Singapore is ranked first 

in KPMG's Autonomous Vehicles Readiness Index, while the Czech Republic has fallen to 

23rd place from the previous 19. 
 

 

Figure 38: KPMG's State Readiness Index for Autonomous Transport. 

 

 
With the introduction of technologies using AI, Singapore has become a leader in solving 

traffic congestion, with the average speed of traffic on the city's main roads being 27 

km/h, while in London, for example, the same parameter is 16 km/h. 
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5. TECHNICAL MEANS AND KNOWLEDGE REQUIREMENTS 
 
As a counterbalance to the often unique solution to a previously unaddressed problem, 

the use of modern AI elements also brings with it higher requirements for technical 

resources and the need for increased operator expertise. Considering the aforementioned 

technology boom in 2009, when nVidia's special computing cards in the form of Graphics 

Processing Units (GPUs) were launched, it is easy to deduce that the market in this area 

is still very dynamic and new technologies appear regularly every year. Conventional office 

computers are not suitable for tasks using AI architectures because they lack the capability 

for massively parallelised computations that are typical for AI tasks. Indeed, AI 

architectures typically contain a high number of repetitive computational blocks of 

common mathematical operations, such as convolution in the case of neural networks. 
 

 

Fig. 39: Example of the internal architecture of the image information processing part of a convolutional 
neural network. 

 

 
The architecture of a personal computer processor (CPU - Central Processing Unit) is based 

on a large cache that allows serial processing of advanced logic operations in a few 

arithmetic-logic units (ALU) (modern processors typically contain 4 or 8 so-called cores). 

It is therefore essentially the opposite of parallelization. For this reason, GPU 

architectures, or GPGPUs (General Purpose GPUs), whose architecture is specifically 

designed to be massively parallelized, are applied for the needs of not only AI tasks. The 

very first GPGPUs contained orders of magnitude more computing cores than the original 

CPUs, and modern GPGPU cards even contain thousands of computing cores.     Recently, 

especially with the development of FW, the long known Field Programmable Gate Array 

(FPGA) technology has also come to the forefront of AI task implementation, which until 

now required very high requirements for knowledge of the specific HW architecture and 

was thus incompatible with the predominantly programming nature of AI task 

implementation. 
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Fig. 40: CPU vs. GPU architecture - an illustration of the difference in the number of computing cores. 

 

 
To support parallel computing, GPGPUs from different vendors are designed in a specific 

proprietary structure. In the case of nVidia, for example, this is the well-known CUDA 

(Compute Unified Device Architecture) technology, which enables efficient execution of 

programs written in supported programming languages (here specifically C/C++, Fortran, 

etc.). 
 
 

Fig. 41: NVIDIA Quadro M5000 GPGPU with 2048 cores (MC approx. 40 thousand CZK). 

 

 
It is possible to use a commonly available workstation to work with the above mentioned 

HW, but it is necessary to size it for the HW, especially the power supply, operating 

memory and storage. The cost of a very basic HW workstation enabling the development 

and partly also the subsequent operation of the AI mechanism should thus be calculated 

at a minimum of 50 thousand CZK. CZK (in 2021). 

In addition to the above technologies suitable for solving tasks using AI methods, there is 

another specific architecture called TPU (Tensor Processing Unit). These special tensor 

computing units are used for demanding tasks mainly in science and research, or for 

extremely data-intensive industrial tasks. 
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Figure 42: Example Google Cloud TPU (top) and Google's high-end cloud array with 64 TPUs and a total 

compute power of 11.5 PFLOPS. 

 

 
From the point of view of working with the above mentioned HW, in addition to the usual 

programming knowledge, knowledge of AI methods and, above all, knowledge of special 

libraries designed for the implementation of AI architectures is required. These are 

constantly evolving and currently various combinations of development environments and 

libraries are often used. Among the most well-known can be mentioned Tensorflow, 

Pytorch, Keras, etc. using C/C++, Python, CUDA and other programming languages. 

Regarding the design of a system for anomaly detection in public transport in the IDS JMK, 

it is necessary to consider at least for the design and implementation a professional 

workplace with experience in designing AI architectures in transport or industry. For the 

subsequent operation of the system, no special knowledge of the operator is required, but 

it is necessary that the dispatcher operator has at least been trained with basic 

information about the specific way the system works. 
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6. LIST OF ABBREVIATIONS 

 
 
AIArtificial  Intelligence / Artificial Intelligence 

ANNArtificial  Neural Network / Artificial Neural Network 

AVRIAutonomous  Vehicles Readiness Index 

BeiDouGlobal  Satellite Positioning System (China) 

CNNConvolutional  Neural Network / Convolutional Neural Network 

CPUCentral  Processing Unit / Central Processing Unit 

FPGAField  Programmable Gate Array GalileoGlobal  Positioning 

Satellite System (EU ESA) 

GLONASS Global Navigation Satellite System / Global Positioning Satellite System (Russia) 

GLCM Gray Level Cooccurrence Matrix (matrix used in texture analysis) GPS 

Global Positioning System / Global Positioning Satellite System (USA) GPU 

Graphic Processing Unit 

GPGPUGeneral  Purpose GPU / General Purpose Graphical Computing Unit 

GTFSGeneral  Transit Feed Specification (Public Transport  Schedule Format) 

IDS JMKIntegrated  Transport System of the South Moravian 

Region LSTMLong  Short-term Memory (recurrent ANN 

 type) 

MLMachine  Learning / Machine Learning 

MLP-RLMultilayer  Perceptor - Linear Regression / Multilayer perceptron (artificial 

neural network architecture) 

R-CNNRegion-based  Convolutional Neural Network (deep learning architecture) 

SSDSingle  Shot Detector (deep learning architecture) 

TPUTensor  Processing Unit / Tensor Computing Unit YOLOYou 

 Only Look Once (Deep Learning Architecture) 
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8. ANNEXES 

 
8.1. Plan of regional lines of IDS JMK 
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8.2. Network of daily transport lines of the city of Brno 
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8.3. IDS JMK statistics 
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8.4. IDS JMK carriers 
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8.5. GTFS specification data files 
 
 
 


