

REPORT ABOUT THE SELECTION OF TYPICAL RENEWABLE ENERGY SYSTEMS

D.T.3.2.1 Information for D3.2.1 Report about the selection of typical renewable energy systems

Version 1

Content

1.	Introduction	2
2.	Process of looking for RES systems important selection principes	2
3.	Suggested solutions	6
4.	Summaries	8

1. Introduction

The Information for D3.2.1 Report about the selection of typical renewable energy systems of RURES project based on the information from D3.1 (D3.1.1 - D3.1.3).

All necessary information were combined by the external sources, eg. <u>www.iea.org</u> and also interesting similar information about RES.

The P11 - VŠB-TU Ostrava is specialist on the field energy utilization and especially RES. All information from D3.1 (D3.1.1 - D3.1.3) are there not repeated.

2. Process of looking for RES systems important selection principes

Selected studied web pages and calculators as support for the decisions indicated at the Chapter 4 (the author used more information, but in minor form):

Links are not sorted by relevance!

- Surveys of web portals, businesses and resources that use calculators to calculate their bids

Inspiration - sources of information, graphic design, etc.<u>https://www.novazelenausporam.cz/jak-na-to/</u>

- Interesting inspiration, solution by using the menu + help

https://svt.sfzp.cz/

- List of products and technologies - we can use it

https://restep.vumop.cz/?core=account

- Interactive map of renewable resources for regional sustainable planning
- Registration required

https://restep.vumop.cz/encyklopedie/index.php/Hlavn%C3%AD_strana

- - Encyclopedia RESTEP, useful as a source of information

http://www.calla.cz/atlas/index.php

- database of facilities using renewable energy sources in the Czech Republic, we could add this atlas to the calculator, the user of the calculator could get contact with the operator in his neighborhood (consultation, advice, exchange of experience), interesting option to extend the maid calculator

http://ekowatt.cz/library/kalkulacky/01_NPVoptimal/01_NPVoptimal.htm

- Calculation of return on thermal insulation of the building

https://www.clear2-project.eu/

 a project focused on testing equipment / technologies for RES, also includes Czech dTest

http://www.energysavingtrust.org.uk/renewable-energy

- a complete procedure for selecting a suitable RES source is not a calculator, it can be used to create a "system" how the calculator should work

Models for calculating the use of photovoltaics / wind at a specific location in Europe / CR / World

https://www.renewables.ninja/

- - Calculation of wind / photovoltaic power anywhere in the world

https://pvwatts.nrel.gov/index.php

- PVE output

http://re.jrc.ec.europa.eu/pvgis/

Model created by the European Commission's research center. It is focused directly on the use of photovoltaic applications, allowing the calculation of electricity production at a particular location anywhere in Europe and Africa. It is available online and free of charge. The computational model uses both satellite measurements and meteorological data.

https://solargis.info/pvplanner/#tl=Google:hybrid&bm=satellite

Simulation tool for planning and optimizing photovoltaic systems using relatively accurate climatic and geographic data. High-performance new-generation algorithms are used for processing. The simulation methods used include the latest knowledge (both theoretical and practical) in the field of solar and PV models.

Calculators

https://www.cezesco.cz/cs/oblasti/firmy-a-obce

- ČEZ ESCO - calculator for photovoltaics, heating and electric cars for companies and municipalities

http://dotacenaakumulaci.cz/

- Accumulation Subsidy, Inspiration for Logical Sorting - "Step by Step"

http://kalkulacka-rd.novazelenausporam.cz/default/form

- Program calculator new green savings, graphically interesting (for example, to calculate house savings), a similar principle applicable to a family house (in the case of a calculator for individuals)

http://www.uhlikovastopa.cz/kalkulacka

- Carbon foot - just for inspiration

https://vytapeni.tzb-info.cz/kotle-kamna-krby/15570-kotlikova-kalkulacka-2017

- - Cauldron Calculator at tzbinfo.cz, Evaluating the annual savings when replacing an old heat source with a new heat source from the viewpoint of fuel or electricity costs, an interesting EXCEL file as an inspiration for us

https://stavba.tzb-info.cz/tabulky-a-vypocty/110-financni-kalkulator-pro-hodnoceniekonomicke-efektivnosti-investic

- Simple Financial Calculator to Evaluate Economic Efficiency of Investment - Inspiration

http://www.ceska-solarni.cz/kalkulacka2011.php#

- Solar calculator

https://docplayer.net/89234285-Ngia-renewable-energy-calculator-user-manual.html

- - Instructions for NGIA Renewable Energy Calculator (no longer on-line), but see the structure in the manual, we can be inspired / used

Problem being solved by a municipality Solution - Disponsible RES

- "1) Reduction of the the energy intensity and environmental burden of communal objects"
 - a) thermal isolation project of a energy consuption reduction
 - b) heating sun, wind
 - "c) lightening" sun
- 2) Wastage management separation of wastage
 - e) communal waste wastage energy
 - f) biodegradabable waste
 - g) subsite fraction of communal wastage
- 3) Mobility Initiatives "biogas, solar / wind energy for electric cars"

4) Municipality Development as a result of energy savings multiplier effect, savings invested in other projects

Conclusions regarding the availability of renewable energy sources can be formulated as follows:

- The use of biomass is advisable to implement in the vicinity of growing and collecting biomass. Another condition is the introduction of specific biomass processing technology and the biomass use logistics system (ie cultivation, collection, storage, collection, treatment and transport to the consumer). That offer biomass combustion and biogas units utilization
- The use of dry rock energy or geothermal energy depends on the geological conditions and the way heat is available. The degree of suitability increases with the amount of heat flow in the territory.
- The use of ambient air or heat pump water is basically possible anywhere (if water is used near the source). However, the condition is need for a bivalent energy source (usually electricity).

- The use of solar energy is also possible throughout the territory and for any hot water consumer systems, but it is always necessary to have another energy source. At present, hot water heating can be considered more promising.
- The use of wind energy in the region is limited by inappropriate weather conditions. It is not excluded individual use, but hopefulness for systemic use is low.

Due to the variability of costs in individual countries, a study RENEWABLE ENERGY BENEFITS: MEASURING THE ECONOMICS was used as additional information.

Other interesting sources:

- <u>https://edu.deloitte.cz/cs/Content/Download/accounting-news-1611</u>
- <u>http://www.financnisprava.cz</u>
- http://www.businessinfo.cz/cs/clanky/ekologicke-dane-3532.html#plyn
- <u>http://www.financnisprava.cz/cs/dane/dane</u>
- http://www.ksh.hu/docs/hun/xftp/idoszaki/nepsz2011/nepsz_03_20_2011.pdf
- <u>http://www.ksh.hu/docs/hun/xftp/idoszaki/regiok/mesz/20_za.pdf</u>
- <u>http://www.ksh.hu/docs/hun/xftp/megy/173/index.html</u>
- <u>https://energiaklub.hu/sites/default/files/negajoule_kutatasi_osszefoglalo_vegleges</u>
 <u>_eng.pdf</u>
- <u>http://www.fu.gov.si/fileadmin/Internet/Davki_in_druge_dajatve/Podrocja/Trosari</u> <u>ne/Opis/Podrobnejsi_opis_1_izdaja_Energenti_in_elektricna_energija.pdf</u>
- <u>http://www.fu.gov.si/davki_in_druge_dajatve/podrocja/okoljske_dajatve/</u>
- <u>https://eeagrants.org/content/download/12185/160146/version/2/file/FMO_170774</u>
 <u>+Blue+Book+Final+Update_2017_FIN.pdf</u>
- <u>http://www.energetika-portal.si/podrocja/energetika/podporna-shema-ove-in-spte/</u>

3. Suggested solutions

According the detailed analyses of D3.1 (D3.1.1 - D3.1.3), included own knowledges and studies of others sources (web pages, similar calculators, and discussion with partners and other companies specialized to the RES system installation we prepared a table for questioners. The fulfilled table follows.

Strengths	Weaknesses	Opportunities	Threats		
• The assumption of a	• Distrust of the	 Possibility to draw 	• The construction of		
change in the	population in new	national and EU funds	central heat sources		
structure of energy	forms and ways of	for the development	with renewable		
sources in favor of	heating family	of RES and to support	energy sources is		
RES	houses	environmental	burdening the		
Reduction of	• Small promoting the	education	budgets of small		
emissions	potential use of RES	 Possibility of energy 	municipalities with		
Improvement of air	in the rural areas	use of thermal water	high costs		
quality especially in	 Lack (?) of 	and geothermal wells	Restrictive		
territories with	motivation of the	 Utilization of 	conditions for the		
deteriorated air	state/region for the	alternative energy	development of RES		
quality	introduction of RES	sources in suitable	in protected zones		
• The current high	• Reducing the levels	localities of the region	Growth in the price		
level of	of watercourses and	 Increasing 	of biomass due to		
centralization of the	water regime	employment in rural	increased demand		
heat supply in the	instability	areas due to the	 Rising electricity and 		
region with contrast	High investment	development of	gas prices encourage		
of decentralization	costs	biomass production	people to return to		
heat supply	• Unevenness in the	 Reduce energy 	fuel with high		
• The huge potential	size of demand for	demands due to a	emissions		
of RES within the	energy in the	change in the	 Negative reactions 		
regions	various territorial	structure of GDP	of citizens to some		
• The current energy	parts of the region	generation	RES projects		
concept of the	Forced investments	 Expected new jobs 	 Uncontrolled 		
region and its	in the grid		construction of RES		
support for RES			 Lack of skilled labor 		
Research capacity					
and companies					
based in the region					

SWOT analysis of RES Solutions

Suggested table for suitability RES utilization in each country:

The	value creation chains of	CR	HU	SL	PL	DE	CZ
rene	wable energy technologies						
exan	nned		7-1-	Davas	Malan	Courses	
Selec	m a stypical renewable energy	Medimurje	Zala	Pomu	Matop	Saxony	Moravian
syste	111	Country	Country	rje	OISKIE		Region
Rene	wable electric power						
1	Onshore wind energy systems						
2	Repowered wind energy systems					Х	
3	Small photovoltaic systems		Х				Х
4	Large photovoltaic systems, room integrated		Х		Х	Х	
5	Large photovoltaic systems, ground-mounted solar parks	X					
6	Small hydroelectric plants						
7	Small biogas plants	Х		Х	Х	Х	Х
8	Large biogas plants		Х				
9	Wood-fired units (chips)			Х	Х		
Rene	wable heating						
10	Small solar thermal energy systems						
11	Large solar thermal energy systems						
12	Geothermal pumps	Х		Х			Х
13	Word-pellet heating						
Biofuels							
14	Plant oil						
15	Bioethanol						
16	Biodiesel						

4. Summaries

According the collected information were these representative RES selected

According this table and other information were selected for RES Calculator follows RES sources:

- Photovoltaic systems (small or in building integrated)
 - \circ $\,$ Max. units to 300 kW electric $\,$
- Wood-fired units
 - Max. units to 300 kW heat output (electric is also possible)
- Geothermal pumps
 - $\circ~$ Max. units to 300 kW heat (cooling) output (electric is also possible, but hard), typical lower
- Biogas plants
 - Max. units to 300 kW heat and electric output

Some solution offer also other variation

In the D3.2.2. Analysis of value creation of selected renewable energy systems - The value creation of the selected RES will be analysed for different system sizes and steps in value creation chain will be integrated more details.