Summary description of the key features of the tool 

This   project   output   relates   to   the   developed   software   tool   aimed   at   planning   of   city   bus   transport electrification. The tool consists of four modules:

  • Driving cycle data post-processing module (DPPM),
  • E-bus simulation module (EBSM),
  • Charging optimization module COM) and
  • Techno-economic analysis module(TEAM).

The  tool   is   written  in   Python  programming  language,   with   computationally   demanded  routines  coded   in  C language.  It  is designed  in  a  user-friendly way (based  on a  graphical  user interface  (GUI) including windows, tabs, input/output data interfaces etc.), where different modules share the same database open for the user. The DPPM serves for postprocessing of on-line recorded driving cycle data, where the outputs include smooth trajectories   of   vehicle   velocity   and   road   slope,   as   well   as   statistical   indices   characterizing   the   city   bus transport driving behaviour.

The   EBSM  provides   computer   simulation   of   different   types   of   city   buses   (conventional   ones   and   different types  of   electric  buses:   hybrid,  plug-in  hybrid  and  fully-electric  buses)   over  the  driving  cycles  generated  in the DPPM. The module outputs include the energy consumption (fuel and/or electricity), the battery state-of-charge trajectory, engine and e-motors operating points plotted over their operating maps, and similar.
The  COM  utilises   the  outputs   of   DPPM  and  EBSM  to   simulate   the   overall   city   bus   transport   over   the   given driving  routes   and   optimises  the  e-bus   charging  management   for   the  cases  of   fast   chargers   placed  at   end stations   and/or   slow  chargers   installed   in  depot.   This   module   provides   the  number   of   buses   and   chargers required  to  fulfil   the  driving  schedules,  as  well  as  fuel  and/or  electricity  consumption  for   the  bus  fleet  and
electricity consumption for charging.

The TEAM uses the output data from the COM and EBSM modules, as well as the data on bus transport investment and exploitation/maintenance cost, in order to calculate the total cost of ownership related to city bus transport electrification.

Expected impact and benefits of the tool for the concerned territories and target groups

The   developed   software   tool   can   be   exploited   by   different   users   to   deliver   a   number   of   benefits   for   the concerned territories and various target groups.

First, the city bus transport companies can use the tool for planning of future introduction  of different types of   electric   buses   and   related   charging   infrastructure.   As   explained   above,   the   tool   is   designed   to   use real/recorded driving  cycles and techno-economic data, which the transport companies are at disposal  of, to calculate   the   optimal   type   and   number   of   e-buses   and   chargers,   as   well   as   prediction   of   total   cost   of ownership   including   investment   and   exploitation   cost.   The   calculation   also   includes   savings   in   energy consumption,   and   equally   important   reduction   of   pollutant   gases   and   CO2   emissions   in   the   concerned

The  public  administrators   can  use  the  tool   to   analyse  the  benefits   of   city   bus  transport   electrification  for different   techno-economic   scenarios,   and   shape   the   incentives   for   end   users   to   proliferate   such   green technologies for the benefits of citizens.
The  tool   can  also   be  used   by   research  and  development  institutions  (e.g.   universities)   for   various   projects aimed at greening the city transport of future, as well as for education purposes.

Sustainability of the tool and its transferability to other territories and stakeholders  

The tool has originally been designed to have an open architecture.
The  user   is   approached  through  a   graphical   user   interface  as  well   as   through  an  open  database  shared  by different   tool   modules,   so  that  different  input  data  characteristic  for   different  users  and  territories  can  be properly   inputted   to   obtain   representative   output   data   for   the   given   scenario   and   city.   As   a   part   of subsequent   project   activities   to   be   conducted   in   2019,   the   tool   will   further   be   extended   and   refined   to maximise its transferability and sustainability. For instance, currently the user can set the powertrain data of
different e-bus types  of parallel  architecture,  while  in  the  final version  it would be  beneficial to enable  the user   to   specify   other   powertrain  architectures  such  as   series  one.   Also,   different   transport   companies  can record the driving cycles by using different bus tracking devices. Therefore, an input filter should be designed or specified, which would transfer the recorded driving cycle data into a unique format required by the tool.

The city bus transport electrification tool developed during the project are described in the following deliverables available in the publication section:

  •  D.T2.3.1 - Tool for post-processing and analysis of recorded driving cycles of city bus transport
  • D.T2.3.2 - Computer simulation model of conventional and e-bus fleets
  • D.T2.3.3 - Optimization tool for e-bus fleet charging management
  • D.T2.3.4 - Computer model for techno-economic analysis of city bus electrification cost